Header logo is


2009


no image
Superconducting phase formation in random neck syntheses: a study of the Y-Ba-Cu-O system by magneto-optics and magnetometry

Willems, J. B., Albrecht, J., Landau, I. L., Hulliger, J.

{Superconductor Science and Technology}, 22, 2009 (article)

mms

DOI [BibTex]

2009


DOI [BibTex]


no image
Determination of spin moments from magnetic EXAFS

Popescu, V., Gü\ssmann, M., Fähnle, M., Schütz, G.

{Physical Review B}, 79, 2009 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Linewidth of ferromagnetic resonance for systems with anisotropic damping

Seib, J., Steiauf, D., Fähnle, M.

{Physical Review B}, 79, 2009 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Structural and magnetic deconvolution of FePt/FeOx-nanoparticles using x-ray magnetic circular dichroism

Nolle, D., Goering, E., Tietze, T., Schütz, G., Figuerola, A., Manna, L.

{New Journal of Physics}, 11, 2009 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Magnetic imaging with femtosecond temporal resolution

Li, J., Lee, M.-S., He, W., Redeker, B., Remhof, A., Amaladass, E., Hassel, C., Eimüller, T.

{Review of Scientific Instruments}, 80(7), 2009 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Elliott-Yafet mechanism and the discussion of femtosecond magnetization dynamics

Steiauf, D., Fähnle, M.

{Physical Review B}, 79, 2009 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Investigation of the stability of Mn12 single molecule magnets

Voss, S., Fonin, M., Burova, L., Burgert, M., Dedkov, Y. S., Preobrajenski, A. B., Goering, E., Groth, U., Kaul, A. R., Ruediger, U.

{Applied Physics A}, 94(3):491-495, 2009 (article)

mms

DOI [BibTex]

DOI [BibTex]

1997


no image
Locally weighted learning

Atkeson, C. G., Moore, A. W., Schaal, S.

Artificial Intelligence Review, 11(1-5):11-73, 1997, clmc (article)

Abstract
This paper surveys locally weighted learning, a form of lazy learning and memory-based learning, and focuses on locally weighted linear regression. The survey discusses distance functions, smoothing parameters, weighting functions, local model structures, regularization of the estimates and bias, assessing predictions, handling noisy data and outliers, improving the quality of predictions by tuning fit parameters, interference between old and new data, implementing locally weighted learning efficiently, and applications of locally weighted learning. A companion paper surveys how locally weighted learning can be used in robot learning and control. Keywords: locally weighted regression, LOESS, LWR, lazy learning, memory-based learning, least commitment learning, distance functions, smoothing parameters, weighting functions, global tuning, local tuning, interference.

am

link (url) [BibTex]

1997


link (url) [BibTex]


no image
Locally weighted learning for control

Atkeson, C. G., Moore, A. W., Schaal, S.

Artificial Intelligence Review, 11(1-5):75-113, 1997, clmc (article)

Abstract
Lazy learning methods provide useful representations and training algorithms for learning about complex phenomena during autonomous adaptive control of complex systems. This paper surveys ways in which locally weighted learning, a type of lazy learning, has been applied by us to control tasks. We explain various forms that control tasks can take, and how this affects the choice of learning paradigm. The discussion section explores the interesting impact that explicitly remembering all previous experiences has on the problem of learning to control. Keywords: locally weighted regression, LOESS, LWR, lazy learning, memory-based learning, least commitment learning, forward models, inverse models, linear quadratic regulation (LQR), shifting setpoint algorithm, dynamic programming.

am

link (url) [BibTex]

link (url) [BibTex]

1994


no image
Robot juggling: An implementation of memory-based learning

Schaal, S., Atkeson, C. G.

Control Systems Magazine, 14(1):57-71, 1994, clmc (article)

Abstract
This paper explores issues involved in implementing robot learning for a challenging dynamic task, using a case study from robot juggling. We use a memory-based local modeling approach (locally weighted regression) to represent a learned model of the task to be performed. Statistical tests are given to examine the uncertainty of a model, to optimize its prediction quality, and to deal with noisy and corrupted data. We develop an exploration algorithm that explicitly deals with prediction accuracy requirements during exploration. Using all these ingredients in combination with methods from optimal control, our robot achieves fast real-time learning of the task within 40 to 100 trials.

am

link (url) [BibTex]

1994


link (url) [BibTex]