Header logo is


2012


no image
Shape memory polymer-based flexure stiffness control in a miniature flapping-wing robot

Hines, L., Arabagi, V., Sitti, M.

IEEE Transactions on Robotics, 28(4):987-990, IEEE, 2012 (article)

pi

[BibTex]

2012


[BibTex]


no image
Micro-manipulation using rotational fluid flows induced by remote magnetic micro-manipulators

Ye, Z., Diller, E., Sitti, M.

Journal of Applied Physics, 112(6):064912, AIP, 2012 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Risk-Sensitivity in Bayesian Sensorimotor Integration

Grau-Moya, J, Ortega, PA, Braun, DA

PLoS Computational Biology, 8(9):1-7, sep 2012 (article)

Abstract
Information processing in the nervous system during sensorimotor tasks with inherent uncertainty has been shown to be consistent with Bayesian integration. Bayes optimal decision-makers are, however, risk-neutral in the sense that they weigh all possibilities based on prior expectation and sensory evidence when they choose the action with highest expected value. In contrast, risk-sensitive decision-makers are sensitive to model uncertainty and bias their decision-making processes when they do inference over unobserved variables. In particular, they allow deviations from their probabilistic model in cases where this model makes imprecise predictions. Here we test for risk-sensitivity in a sensorimotor integration task where subjects exhibit Bayesian information integration when they infer the position of a target from noisy sensory feedback. When introducing a cost associated with subjects' response, we found that subjects exhibited a characteristic bias towards low cost responses when their uncertainty was high. This result is in accordance with risk-sensitive decision-making processes that allow for deviations from Bayes optimal decision-making in the face of uncertainty. Our results suggest that both Bayesian integration and risk-sensitivity are important factors to understand sensorimotor integration in a quantitative fashion.

ei

DOI [BibTex]

DOI [BibTex]


no image
Accurate dosimetry in scanning transmission X-ray microscopes via the cross-linking threshold dose of poly(methyl methacrylate)

Leontowich, A. F. G., Hitchcock, A. P., Tyliszczak, T., Weigand, M., Wang, J., Karunakaran, C.

{Journal of Synchrotron Radiation}, 19(6):976-987, 2012 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Biogenic potassium salt particles as seeds for secondary organic aerosal in the amazon

Pöhlker, C., Wiedemann, K. T., Sinha, B., Shiraiwa, M., Gunthe, S. S., Smith, M., Su, H., Artaxo, P., Chen, Q., Cheng, Y., Elbert, W., Gilles, M. K., Kilcoyne, A. L. D., Moffet, R. C., Weigand, M., Martin, S. T., Pöschl, U., Andreae, M. O.

{Science}, 337, pages: 1075-1078, 2012 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Metal@COFs: Covalent organic frameworks as templates for Pd nanoparticles and hydrogen storage properties of Pd@COF-102 hybrid material

Kalidindi, S. B., Oh, H., Hirscher, M., Esken, D., Wiktor, C., Turner, S., Van Tendeloo, G., Fischer, R. A.

{Chemistry-a European Journal}, 18(35):10848-10856, VCH Verlagsgesellschaft, Weinheim, Germany, 2012 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Ion beam lithography for direct patterning of high accuracy large area X-ray elements in gold on membranes

Nadzeyka, A., Peto, L., Bauerdick, S., Mayer, M., Keskinbora, K., Grévent, C., Weigand, M., Hirscher, M., Schütz, G.

{Microelectronic Engineering}, 98, pages: 198-201, 2012 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Remotely addressable magnetic composite micropumps

Diller, E., Miyashita, S., Sitti, M.

Rsc Advances, 2(9):3850-3856, Royal Society of Chemistry, 2012 (article)

pi

[BibTex]

[BibTex]


no image
Micro- and nanoscale fluid flow on chemical channels

Dörfler, Fabian, Rauscher, Markus, Koplik, Joel, Harting, Jens, Dietrich, S.

{Soft Matter}, 8(35):9221-9234, 2012 (article)

mms

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Novel characterization of the adsorption sites in large pore Metal-Organic Frameworks: Combination of X-ray powder diffraction and thermal desorption spectroscopy

Soleimani Dorcheh, A., Dinnebier, R. E., Kuc, A., Magdysyuk, O., Adams, F., Denysenko, D., Heine, T., Volkmer, D., Donner, W., Hirscher, M.

{Physical Chemistry Chemical Physics}, 14(37):12892-12897, 2012 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Tunnel contacts for spin injection into silicon: The Si-Co interface with and without a MgO tunnel barrier - A study by high-resolution Rutherford backscattering

Dash, S. P., Goll, D., Kopold, P., Carstanjen, H. D.

{Advances in Materials Science and Engineering}, 2012, 2012 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Fast spin-wave-mediated magnetic vortex core reversal

Kammerer, M., Stoll, H., Noske, M., Sproll, M., Weigand, M., Illg, C., Woltersdorf, G., Fähnle, M., Back, C., Schütz, G.

{Physical Review B}, 86(13), 2012 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Deformation-driven formation of equilibrium phases in the Cu-Ni alloys

Straumal, B. B., Protasova, S. G., Mazilkin, A. A., Rabkin, E., Goll, D., Schütz, G., Baretzky, B., Valiev, R. Z.

{Journal of Materials Science}, 47, pages: 360-367, 2012 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Nanosponges for hydrogen storage

Schlichtenmayer, M., Hirscher, M.

{Journal of Materials Chemistry}, 22, pages: 10134-10143, 2012 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Magnetic and electronic properties of the interface between half metallic Fe3O4 and semiconducting ZnO

Brück, S., Paul, M., Tian, H., Müller, A., Kufer, D., Praetorius, C., Fauth, K., Audehm, P., Goering, E., Verbeeck, J., Van Tendeloo, G., Sing, M., Claessen, R.

{Applied Physics Letters}, 100, 2012 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Amorphous interlayers between crystalline grains in ferromagnetic ZnO films

Straumal, B. B., Protasova, S. G., Mazilkin, A. A., Baretzky, B., Myatiev, A. A., Straumal, P. B., Tietze, T., Schütz, G., Goering, E.

{Materials Letters}, 71, pages: 21-24, 2012 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Model-free reinforcement learning of impedance control in stochastic environments

Stulp, Freek, Buchli, Jonas, Ellmer, Alice, Mistry, Michael, Theodorou, Evangelos A., Schaal, S.

Autonomous Mental Development, IEEE Transactions on, 4(4):330-341, 2012 (article)

am

[BibTex]

[BibTex]


no image
Shape-Programmable Soft Capsule Robots for Semi-Implantable Drug Delivery

Yim, S., Sitti, M.

Mechatronics, IEEE/ASME Transactions on, 2012 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Control of multiple heterogeneous magnetic microrobots in two dimensions on nonspecialized surfaces

Diller, E., Floyd, S., Pawashe, C., Sitti, M.

IEEE Transactions on Robotics, 28(1):172-182, IEEE, 2012 (article)

pi

[BibTex]

[BibTex]


no image
Gecko-Inspired Controllable Adhesive Structures Applied to Micromanipulation

Mengüç, Y., Yang, S. Y., Kim, S., Rogers, J. A., Sitti, M.

Advanced Functional Materials, 22(6):1245-1245, WILEY-VCH Verlag, 2012 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Elastomer surfaces with directionally dependent adhesion strength and their use in transfer printing with continuous roll-to-roll applications

Yang, S. Y., Carlson, A., Cheng, H., Yu, Q., Ahmed, N., Wu, J., Kim, S., Sitti, M., Ferreira, P. M., Huang, Y., others,

Advanced Materials, 24(16):2117-2122, WILEY-VCH Verlag, 2012 (article)

pi

[BibTex]

[BibTex]


no image
Effect of retraction speed on adhesion of elastomer fibrillar structures

Abusomwan, U., Sitti, M.

Applied Physics Letters, 101(21):211907, AIP, 2012 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Accelerated diffusion and phase transformations in Co-Cu alloys driven by the severe plastic deformation

Straumal, B. B., Mazilkin, A. A., Baretzky, B., Schütz, G., Rabkin, E., Valiev, R. Z.

{Special Issue on Advanced Materials Science in Bulk Nanostructured Metals}, 53(1):63-71, 2012 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Unusual flux jumps above 12 K in non-homogeneous MgB2 thin films

Treiber, S., Stahl, C., Schütz, G., Albrecht, J.

{Superconductor Science \& Technology}, 25, 2012 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Ferromagnetism of nanostructured zinc oxide films

Straumal, B. B., Mazilkin, A. A., Protasova, S. G., Straumal, P. B., Myatiev, A. A., Schütz, G., Goering, E., Baretzky, B.

{The Physics of Metals and Metallography}, 113(13):1244-1256, 2012 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Frequencies and polarization vectors of phonons: Results from force constants which are fitted to experimental data or calculated ab initio

Illg, C., Meyer, B., Fähnle, M.

{Physical Review B}, 86(17), Published by the American Physical Society through the American Institute of Physics, Woodbury, NY, 2012 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Grain boundary wetting by a second solid phase in the Zr-Nb alloys

Straumal, B. B., Gornakova, A. S., Kucheev, Y. O., Baretzky, B., Nekrasov, A. N.

{Journal of Materials Engineering and Performance}, 21(5):721-724, 2012 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Grain boundary wetting in the NdFeB-based hard magnetic alloys

Straumal, B. B., Kucheev, Y. O., Yatskovskaya, I. L., Mogilnikova, I. V., Schütz, G., Nekrasov, A. N., Baretzky, B.

{Journal of Materials Science}, 47(24):8352-8359, 2012 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Reinforcement Learning with Sequences of Motion Primitives for Robust Manipulation

Stulp, F., Theodorou, E., Schaal, S.

IEEE Transactions on Robotics, 2012 (article)

am

[BibTex]

[BibTex]


no image
Impact and Surface Tension in Water: a Study of Landing Bodies

Shih, B., Laham, L., Lee, K. J., Krasnoff, N., Diller, E., Sitti, M.

Bio-inspired Robotics Final Project, Carnegie Mellon University, 2012 (article)

pi

[BibTex]

[BibTex]


no image
Design and rolling locomotion of a magnetically actuated soft capsule endoscope

Yim, S., Sitti, M.

IEEE Transactions on Robotics, 28(1):183-194, IEEE, 2012 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Design and manufacturing of a controllable miniature flapping wing robotic platform

Arabagi, V., Hines, L., Sitti, M.

The International Journal of Robotics Research, 31(6):785-800, SAGE Publications Sage UK: London, England, 2012 (article)

pi

[BibTex]

[BibTex]


no image
Chemotactic steering of bacteria propelled microbeads

Kim, D., Liu, A., Diller, E., Sitti, M.

Biomedical microdevices, 14(6):1009-1017, Springer US, 2012 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Magnetic proximity effect in YBa2Cu3O7 / La2/3Ca1/3MnO3 and YBa2Cu3O7 / LaMnO3+δsuperlattices

Satapathy, D. K., Uribe-Laverde, M. A., Marozau, I., Malik, V. K., Das, S., Wagner, T., Marcelot, C., Stahn, J., Brück, S., Rühm, A., Macke, S., Tietze, T., Goering, E., Frañó, A., Kim, J., Wu, M., Benckiser, E., Keimer, B., Devishvili, A., Toperverg, B. P., Merz, M., Nagel, P., Schuppler, S., Bernhard, C.

{Physical Review Letters}, 108, 2012 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Noble gases and microporous frameworks; from interaction to application

Soleimani Dorcheh, A., Denysenko, D., Volkmer, D., Donner, W., Hirscher, M.

{Microporous and Mesoporous Materials}, 162, pages: 64-68, Elsevier, Amsterdam, 2012 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Note: Unique characterization possibilities in the ultra high vacuum scanning transmission x-ray microscope (UHV-STXM) "MAXYMUS" using a rotatable permanent magnetic field up to 0.22 T

Nolle, D., Weigand, M., Audehm, P., Goering, E., Wiesemann, U., Wolter, C., Nolle, E., Schütz, G.

{Review of Scientific Instruments}, 83(4), 2012 (article)

mms

DOI [BibTex]


no image
Microstructure and superconducting properties of MgB2 films prepared by solid state reaction of multilayer precursors of the elements

Kugler, B., Stahl, C., Treiber, S., Soltan, S., Haug, S., Schütz, G., Albrecht, J.

{Thin Solid Films}, 520, pages: 6985-6988, 2012 (article)

mms

DOI [BibTex]

DOI [BibTex]

2009


no image
Efficient Subwindow Search: A Branch and Bound Framework for Object Localization

Lampert, C., Blaschko, M., Hofmann, T.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(12):2129-2142, December 2009 (article)

Abstract
Most successful object recognition systems rely on binary classification, deciding only if an object is present or not, but not providing information on the actual object location. To estimate the object‘s location, one can take a sliding window approach, but this strongly increases the computational cost because the classifier or similarity function has to be evaluated over a large set of candidate subwindows. In this paper, we propose a simple yet powerful branch and bound scheme that allows efficient maximization of a large class of quality functions over all possible subimages. It converges to a globally optimal solution typically in linear or even sublinear time, in contrast to the quadratic scaling of exhaustive or sliding window search. We show how our method is applicable to different object detection and image retrieval scenarios. The achieved speedup allows the use of classifiers for localization that formerly were considered too slow for this task, such as SVMs with a spatial pyramid kernel or nearest-neighbor classifiers based on the chi^2 distance. We demonstrate state-of-the-art localization performance of the resulting systems on the UIUC Cars data set, the PASCAL VOC 2006 data set, and in the PASCAL VOC 2007 competition.

ei

PDF Web DOI [BibTex]

2009


PDF Web DOI [BibTex]


no image
Generation of three-dimensional random rotations in fitting and matching problems

Habeck, M.

Computational Statistics, 24(4):719-731, December 2009 (article)

Abstract
An algorithm is developed to generate random rotations in three-dimensional space that follow a probability distribution arising in fitting and matching problems. The rotation matrices are orthogonally transformed into an optimal basis and then parameterized using Euler angles. The conditional distributions of the three Euler angles have a very simple form: the two azimuthal angles can be decoupled by sampling their sum and difference from a von Mises distribution; the cosine of the polar angle is exponentially distributed and thus straighforward to generate. Simulation results are shown and demonstrate the effectiveness of the method. The algorithm is compared to other methods for generating random rotations such as a random walk Metropolis scheme and a Gibbs sampling algorithm recently introduced by Green and Mardia. Finally, the algorithm is applied to a probabilistic version of the Procrustes problem of fitting two point sets and applied in the context of protein structure superposition.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Adaptive Importance Sampling for Value Function Approximation in Off-policy Reinforcement Learning

Hachiya, H., Akiyama, T., Sugiyama, M., Peters, J.

Neural Networks, 22(10):1399-1410, December 2009 (article)

Abstract
Off-policy reinforcement learning is aimed at efficiently using data samples gathered from a policy that is different from the currently optimized policy. A common approach is to use importance sampling techniques for compensating for the bias of value function estimators caused by the difference between the data-sampling policy and the target policy. However, existing off-policy methods often do not take the variance of the value function estimators explicitly into account and therefore their performance tends to be unstable. To cope with this problem, we propose using an adaptive importance sampling technique which allows us to actively control the trade-off between bias and variance. We further provide a method for optimally determining the trade-off parameter based on a variant of cross-validation. We demonstrate the usefulness of the proposed approach through simulations.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Guest editorial: special issue on structured prediction

Parker, C., Altun, Y., Tadepalli, P.

Machine Learning, 77(2-3):161-164, December 2009 (article)

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Structured prediction by joint kernel support estimation

Lampert, CH., Blaschko, MB.

Machine Learning, 77(2-3):249-269, December 2009 (article)

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
A note on ethical aspects of BCI

Haselager, P., Vlek, R., Hill, J., Nijboer, F.

Neural Networks, 22(9):1352-1357, November 2009 (article)

Abstract
This paper focuses on ethical aspects of BCI, as a research and a clinical tool, that are challenging for practitioners currently working in the field. Specifically, the difficulties involved in acquiring informed consent from locked-in patients are investigated, in combination with an analysis of the shared moral responsibility in BCI teams, and the complications encountered in establishing effective communication with media.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Model Learning with Local Gaussian Process Regression

Nguyen-Tuong, D., Seeger, M., Peters, J.

Advanced Robotics, 23(15):2015-2034, November 2009 (article)

Abstract
Precise models of robot inverse dynamics allow the design of significantly more accurate, energy-efficient and compliant robot control. However, in some cases the accuracy of rigid-body models does not suffice for sound control performance due to unmodeled nonlinearities arising from hydraulic cable dynamics, complex friction or actuator dynamics. In such cases, estimating the inverse dynamics model from measured data poses an interesting alternative. Nonparametric regression methods, such as Gaussian process regression (GPR) or locally weighted projection regression (LWPR), are not as restrictive as parametric models and, thus, offer a more flexible framework for approximating unknown nonlinearities. In this paper, we propose a local approximation to the standard GPR, called local GPR (LGP), for real-time model online learning by combining the strengths of both regression methods, i.e., the high accuracy of GPR and the fast speed of LWPR. The approach is shown to have competitive learning performance for hig h-dimensional data while being sufficiently fast for real-time learning. The effectiveness of LGP is exhibited by a comparison with the state-of-the-art regression techniques, such as GPR, LWPR and ν-support vector regression. The applicability of the proposed LGP method is demonstrated by real-time online learning of the inverse dynamics model for robot model-based control on a Barrett WAM robot arm.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Inferring textual entailment with a probabilistically sound calculus

Harmeling, S.

Natural Language Engineering, 15(4):459-477, October 2009 (article)

Abstract
We introduce a system for textual entailment that is based on a probabilistic model of entailment. The model is defined using a calculus of transformations on dependency trees, which is characterized by the fact that derivations in that calculus preserve the truth only with a certain probability. The calculus is successfully evaluated on the datasets of the PASCAL Challenge on Recognizing Textual Entailment.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Modeling and Visualizing Uncertainty in Gene Expression Clusters using Dirichlet Process Mixtures

Rasmussen, CE., de la Cruz, BJ., Ghahramani, Z., Wild, DL.

IEEE/ACM Transactions on Computational Biology and Bioinformatics, 6(4):615-628, October 2009 (article)

Abstract
Although the use of clustering methods has rapidly become one of the standard computational approaches in the literature of microarray gene expression data, little attention has been paid to uncertainty in the results obtained. Dirichlet process mixture models provide a non-parametric Bayesian alternative to the bootstrap approach to modeling uncertainty in gene expression clustering. Most previously published applications of Bayesian model based clustering methods have been to short time series data. In this paper we present a case study of the application of non-parametric Bayesian clustering methods to the clustering of high-dimensional non-time series gene expression data using full Gaussian covariances. We use the probability that two genes belong to the same cluster in a Dirichlet process mixture model as a measure of the similarity of these gene expression profiles. Conversely, this probability can be used to define a dissimilarity measure, which, for the purposes of visualization, can be input to one of the standard linkage algorithms used for hierarchical clustering. Biologically plausible results are obtained from the Rosetta compendium of expression profiles which extend previously published cluster analyses of this data.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Thermodynamic efficiency of information and heat flow

Allahverdyan, A., Janzing, D., Mahler, G.

Journal of Statistical Mechanics: Theory and Experiment, 2009(09):P09011, September 2009 (article)

Abstract
A basic task of information processing is information transfer (flow). P0 Here we study a pair of Brownian particles each coupled to a thermal bath at temperatures T1 and T2 . The information flow in such a system is defined via the time-shifted mutual information. The information flow nullifies at equilibrium, and its efficiency is defined as the ratio of the flow to the total entropy production in the system. For a stationary state the information flows from higher to lower temperatures, and its efficiency is bounded from above by (max[T1 , T2 ])/(|T1 − T2 |). This upper bound is imposed by the second law and it quantifies the thermodynamic cost for information flow in the present class of systems. It can be reached in the adiabatic situation, where the particles have widely different characteristic times. The efficiency of heat flow—defined as the heat flow over the total amount of dissipated heat—is limited from above by the same factor. There is a complementarity between heat and information flow: the set-up which is most efficient for the former is the least efficient for the latter and vice versa. The above bound for the efficiency can be (transiently) overcome in certain non-stationary situations, but the efficiency is still limited from above. We study yet another measure of information processing (transfer entropy) proposed in the literature. Though this measure does not require any thermodynamic cost, the information flow and transfer entropy are shown to be intimately related for stationary states.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Does Cognitive Science Need Kernels?

Jäkel, F., Schölkopf, B., Wichmann, F.

Trends in Cognitive Sciences, 13(9):381-388, September 2009 (article)

Abstract
Kernel methods are among the most successful tools in machine learning and are used in challenging data analysis problems in many disciplines. Here we provide examples where kernel methods have proven to be powerful tools for analyzing behavioral data, especially for identifying features in categorization experiments. We also demonstrate that kernel methods relate to perceptrons and exemplar models of categorization. Hence, we argue that kernel methods have neural and psychological plausibility, and theoretical results concerning their behavior are therefore potentially relevant for human category learning. In particular, we believe kernel methods have the potential to provide explanations ranging from the implementational via the algorithmic to the computational level.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Robot Learning

Peters, J., Morimoto, J., Tedrake, R., Roy, N.

IEEE Robotics and Automation Magazine, 16(3):19-20, September 2009 (article)

Abstract
Creating autonomous robots that can learn to act in unpredictable environments has been a long-standing goal of robotics, artificial intelligence, and the cognitive sciences. In contrast, current commercially available industrial and service robots mostly execute fixed tasks and exhibit little adaptability. To bridge this gap, machine learning offers a myriad set of methods, some of which have already been applied with great success to robotics problems. As a result, there is an increasing interest in machine learning and statistics within the robotics community. At the same time, there has been a growth in the learning community in using robots as motivating applications for new algorithms and formalisms. Considerable evidence of this exists in the use of learning in high-profile competitions such as RoboCup and the Defense Advanced Research Projects Agency (DARPA) challenges, and the growing number of research programs funded by governments around the world.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Kernel Methods in Computer Vision

Lampert, CH.

Foundations and Trends in Computer Graphics and Vision, 4(3):193-285, September 2009 (article)

Abstract
Over the last years, kernel methods have established themselves as powerful tools for computer vision researchers as well as for practitioners. In this tutorial, we give an introduction to kernel methods in computer vision from a geometric perspective, introducing not only the ubiquitous support vector machines, but also less known techniques for regression, dimensionality reduction, outlier detection and clustering. Additionally, we give an outlook on very recent, non-classical techniques for the prediction of structure data, for the estimation of statistical dependency and for learning the kernel function itself. All methods are illustrated with examples of successful application from the recent computer vision research literature.

ei

Web DOI [BibTex]

Web DOI [BibTex]