Header logo is de


2010


no image
Derivatives of Logarithmic Stationary Distributions for Policy Gradient Reinforcement Learning

Morimura, T., Uchibe, E., Yoshimoto, J., Peters, J., Doya, K.

Neural Computation, 22(2):342-376, February 2010 (article)

Abstract
Most conventional policy gradient reinforcement learning (PGRL) algorithms neglect (or do not explicitly make use of) a term in the average reward gradient with respect to the policy parameter. That term involves the derivative of the stationary state distribution that corresponds to the sensitivity of its distribution to changes in the policy parameter. Although the bias introduced by this omission can be reduced by setting the forgetting rate γ for the value functions close to 1, these algorithms do not permit γ to be set exactly at γ = 1. In this article, we propose a method for estimating the log stationary state distribution derivative (LSD) as a useful form of the derivative of the stationary state distribution through backward Markov chain formulation and a temporal difference learning framework. A new policy gradient (PG) framework with an LSD is also proposed, in which the average reward gradient can be estimated by setting //!-- MFG_und--//amp;#947; = 0, so it becomes unnecessary to learn the value functions. We also test the performance of the proposed algorithms using simple benchmark tasks and show that these can improve the performances of existing PG methods.

ei

PDF Web DOI [BibTex]

2010


PDF Web DOI [BibTex]


no image
Causality: Objectives and Assessment

Guyon, I., Janzing, D., Schölkopf, B.

In JMLR Workshop and Conference Proceedings: Volume 6 , pages: 1-42, (Editors: I Guyon and D Janzing and B Schölkopf), MIT Press, Cambridge, MA, USA, Causality: Objectives and Assessment (NIPS Workshop) , February 2010 (inproceedings)

Abstract
The NIPS 2008 workshop on causality provided a forum for researchers from different horizons to share their view on causal modeling and address the difficult question of assessing causal models. There has been a vivid debate on properly separating the notion of causality from particular models such as graphical models, which have been dominating the field in the past few years. Part of the workshop was dedicated to discussing the results of a challenge, which offered a wide variety of applications of causal modeling. We have regrouped in these proceedings the best papers presented. Most lectures were videotaped or recorded. All information regarding the challenge and the lectures are found at http://www.clopinet.com/isabelle/Projects/NIPS2008/. This introduction provides a synthesis of the findings and a gentle introduction to causality topics, which are the object of active research.

ei

Web [BibTex]

Web [BibTex]


no image
Bayesian Online Multitask Learning of Gaussian Processes

Pillonetto, G., Dinuzzo, F., De Nicolao, G.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(2):193-205, February 2010 (article)

Abstract
Standard single-task kernel methods have recently been extended to the case of multitask learning in the context of regularization theory. There are experimental results, especially in biomedicine, showing the benefit of the multitask approach compared to the single-task one. However, a possible drawback is computational complexity. For instance, when regularization networks are used, complexity scales as the cube of the overall number of training data, which may be large when several tasks are involved. The aim of this paper is to derive an efficient computational scheme for an important class of multitask kernels. More precisely, a quadratic loss is assumed and each task consists of the sum of a common term and a task-specific one. Within a Bayesian setting, a recursive online algorithm is obtained, which updates both estimates and confidence intervals as new data become available. The algorithm is tested on two simulated problems and a real data set relative to xenobiotics administration in human patients.

ei

DOI [BibTex]

DOI [BibTex]


no image
JMLR Workshop and Conference Proceedings: Volume 6

Guyon, I., Janzing, D., Schölkopf, B.

pages: 288, MIT Press, Cambridge, MA, USA, Causality: Objectives and Assessment (NIPS Workshop) , February 2010 (proceedings)

ei

Web [BibTex]

Web [BibTex]


no image
Learning Motor Primitives for Robotics

Kober, J., Peters, J.

EVENT Lab: Reinforcement Learning in Robotics and Virtual Reality, January 2010 (talk)

Abstract
The acquisition and self-improvement of novel motor skills is among the most important problems in robotics. Motor primitives offer one of the most promising frameworks for the application of machine learning techniques in this context. Employing the Dynamic Systems Motor primitives originally introduced by Ijspeert et al. (2003), appropriate learning algorithms for a concerted approach of both imitation and reinforcement learning are presented. Using these algorithms new motor skills, i.e., Ball-in-a-Cup, Ball-Paddling and Dart-Throwing, are learned.

ei

[BibTex]

[BibTex]


no image
The semigroup approach to transport processes in networks

Dorn, B., Fijavz, M., Nagel, R., Radl, A.

Physica D: Nonlinear Phenomena, 239(15):1416-1421, January 2010 (article)

Abstract
We explain how operator semigroups can be used to study transport processes in networks. This method is applied to a linear Boltzmann equation on a finite as well as on an infinite network and yields well-posedness and information on the long term behavior of the solutions to the presented problems.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Learning Continuous Grasp Affordances by Sensorimotor Exploration

Detry, R., Baseski, E., Popovic, M., Touati, Y., Krüger, N., Kroemer, O., Peters, J., Piater, J.

In From Motor Learning to Interaction Learning in Robots, pages: 451-465, Studies in Computational Intelligence ; 264, (Editors: Sigaud, O. and Peters, J.), Springer, Berlin, Germany, January 2010 (inbook)

Abstract
We develop means of learning and representing object grasp affordances probabilistically. By grasp affordance, we refer to an entity that is able to assess whether a given relative object-gripper configuration will yield a stable grasp. These affordances are represented with grasp densities, continuous probability density functions defined on the space of 3D positions and orientations. Grasp densities are registered with a visual model of the object they characterize. They are exploited by aligning them to a target object using visual pose estimation. Grasp densities are refined through experience: A robot “plays” with an object by executing grasps drawn randomly for the object’s grasp density. The robot then uses the outcomes of these grasps to build a richer density through an importance sampling mechanism. Initial grasp densities, called hypothesis densities, are bootstrapped from grasps collected using a motion capture system, or from grasps generated from the visual model of the object. Refined densities, called empirical densities, represent affordances that have been confirmed through physical experience. The applicability of our method is demonstrated by producing empirical densities for two object with a real robot and its 3-finger hand. Hypothesis densities are created from visual cues and human demonstration.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Optimization of k-Space Trajectories for Compressed Sensing by Bayesian Experimental Design

Seeger, M., Nickisch, H., Pohmann, R., Schölkopf, B.

Magnetic Resonance in Medicine, 63(1):116-126, January 2010 (article)

Abstract
The optimization of k-space sampling for nonlinear sparse MRI reconstruction is phrased as a Bayesian experimental design problem. Bayesian inference is approximated by a novel relaxation to standard signal processing primitives, resulting in an efficient optimization algorithm for Cartesian and spiral trajectories. On clinical resolution brain image data from a Siemens 3T scanner, automatically optimized trajectories lead to significantly improved images, compared to standard low-pass, equispaced, or variable density randomized designs. Insights into the nonlinear design optimization problem for MRI are given.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Imitation and Reinforcement Learning for Motor Primitives with Perceptual Coupling

Kober, J., Mohler, B., Peters, J.

In From Motor Learning to Interaction Learning in Robots, pages: 209-225, Studies in Computational Intelligence ; 264, (Editors: Sigaud, O. and Peters, J.), Springer, Berlin, Germany, January 2010 (inbook)

Abstract
Traditional motor primitive approaches deal largely with open-loop policies which can only deal with small perturbations. In this paper, we present a new type of motor primitive policies which serve as closed-loop policies together with an appropriate learning algorithm. Our new motor primitives are an augmented version version of the dynamical system-based motor primitives [Ijspeert et al(2002)Ijspeert, Nakanishi, and Schaal] that incorporates perceptual coupling to external variables. We show that these motor primitives can perform complex tasks such as Ball-in-a-Cup or Kendama task even with large variances in the initial conditions where a skilled human player would be challenged. We initialize the open-loop policies by imitation learning and the perceptual coupling with a handcrafted solution. We first improve the open-loop policies and subsequently the perceptual coupling using a novel reinforcement learning method which is particularly well-suited for dynamical system-based motor primitives.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
From Motor Learning to Interaction Learning in Robots

Sigaud, O., Peters, J.

In From Motor Learning to Interaction Learning in Robots, pages: 1-12, Studies in Computational Intelligence ; 264, (Editors: Sigaud, O. and Peters, J.), Springer, Berlin, Germany, January 2010 (inbook)

Abstract
The number of advanced robot systems has been increasing in recent years yielding a large variety of versatile designs with many degrees of freedom. These robots have the potential of being applicable in uncertain tasks outside wellstructured industrial settings. However, the complexity of both systems and tasks is often beyond the reach of classical robot programming methods. As a result, a more autonomous solution for robot task acquisition is needed where robots adaptively adjust their behaviour to the encountered situations and required tasks. Learning approaches pose one of the most appealing ways to achieve this goal. However, while learning approaches are of high importance for robotics, we cannot simply use off-the-shelf methods from the machine learning community as these usually do not scale into the domains of robotics due to excessive computational cost as well as a lack of scalability. Instead, domain appropriate approaches are needed. In this book, we focus on several core domains of robot learning. For accurate task execution, we need motor learning capabilities. For fast learning of the motor tasks, imitation learning offers the most promising approach. Self improvement requires reinforcement learning approaches that scale into the domain of complex robots. Finally, for efficient interaction of humans with robot systems, we will need a form of interaction learning. This chapter provides a general introduction to these issues and briefly presents the contributions of the subsequent chapters to the corresponding research topics.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
From Motor Learning to Interaction Learning in Robots

Sigaud, O., Peters, J.

pages: 538, Studies in Computational Intelligence ; 264, (Editors: O Sigaud, J Peters), Springer, Berlin, Germany, January 2010 (book)

Abstract
From an engineering standpoint, the increasing complexity of robotic systems and the increasing demand for more autonomously learning robots, has become essential. This book is largely based on the successful workshop "From motor to interaction learning in robots" held at the IEEE/RSJ International Conference on Intelligent Robot Systems. The major aim of the book is to give students interested the topics described above a chance to get started faster and researchers a helpful compandium.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Real-Time Local GP Model Learning

Nguyen-Tuong, D., Seeger, M., Peters, J.

In From Motor Learning to Interaction Learning in Robots, 264, pages: 193-207, Studies in Computational Intelligence, (Editors: Sigaud, O. and Peters, J.), Springer, Berlin, Germany, January 2010 (inbook)

Abstract
For many applications in robotics, accurate dynamics models are essential. However, in some applications, e.g., in model-based tracking control, precise dynamics models cannot be obtained analytically for sufficiently complex robot systems. In such cases, machine learning offers a promising alternative for approximating the robot dynamics using measured data. However, standard regression methods such as Gaussian process regression (GPR) suffer from high computational complexity which prevents their usage for large numbers of samples or online learning to date. In this paper, we propose an approximation to the standard GPR using local Gaussian processes models inspired by [Vijayakumar et al(2005)Vijayakumar, D’Souza, and Schaal, Snelson and Ghahramani(2007)]. Due to reduced computational cost, local Gaussian processes (LGP) can be applied for larger sample-sizes and online learning. Comparisons with other nonparametric regressions, e.g., standard GPR, support vector regression (SVR) and locally weighted proje ction regression (LWPR), show that LGP has high approximation accuracy while being sufficiently fast for real-time online learning.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Finding Gene-Gene Interactions using Support Vector Machines

Rakitsch, B.

Eberhard Karls Universität Tübingen, Germany, 2010 (diplomathesis)

ei

[BibTex]

[BibTex]


no image
Accurate Prediction of Protein-Coding Genes with Discriminative Learning Techniques

Schweikert, G.

Technische Universität Berlin, Germany, 2010 (phdthesis)

ei

[BibTex]


no image
Leveraging Sequence Classification by Taxonomy-based Multitask Learning

Widmer, C., Leiva, J., Altun, Y., Rätsch, G.

In Research in Computational Molecular Biology, LNCS, Vol. 6044, pages: 522-534, (Editors: B Berger), Springer, Berlin, Germany, 14th Annual International Conference, RECOMB, 2010 (inproceedings)

ei

DOI [BibTex]

DOI [BibTex]


no image
Machine Learning Methods for Automatic Image Colorization

Charpiat, G., Bezrukov, I., Hofmann, M., Altun, Y., Schölkopf, B.

In Computational Photography: Methods and Applications, pages: 395-418, Digital Imaging and Computer Vision, (Editors: Lukac, R.), CRC Press, Boca Raton, FL, USA, 2010 (inbook)

Abstract
We aim to color greyscale images automatically, without any manual intervention. The color proposition could then be interactively corrected by user-provided color landmarks if necessary. Automatic colorization is nontrivial since there is usually no one-to-one correspondence between color and local texture. The contribution of our framework is that we deal directly with multimodality and estimate, for each pixel of the image to be colored, the probability distribution of all possible colors, instead of choosing the most probable color at the local level. We also predict the expected variation of color at each pixel, thus defining a non-uniform spatial coherency criterion. We then use graph cuts to maximize the probability of the whole colored image at the global level. We work in the L-a-b color space in order to approximate the human perception of distances between colors, and we use machine learning tools to extract as much information as possible from a dataset of colored examples. The resulting algorithm is fast, designed to be more robust to texture noise, and is above all able to deal with ambiguity, in contrary to previous approaches.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Probabilistic latent variable models for distinguishing between cause and effect

Mooij, J., Stegle, O., Janzing, D., Zhang, K., Schölkopf, B.

In Advances in Neural Information Processing Systems 23, pages: 1687-1695, (Editors: J Lafferty and CKI Williams and J Shawe-Taylor and RS Zemel and A Culotta), Curran, Red Hook, NY, USA, 24th Annual Conference on Neural Information Processing Systems (NIPS), 2010 (inproceedings)

Abstract
We propose a novel method for inferring whether X causes Y or vice versa from joint observations of X and Y. The basic idea is to model the observed data using probabilistic latent variable models, which incorporate the effects of unobserved noise. To this end, we consider the hypothetical effect variable to be a function of the hypothetical cause variable and an independent noise term (not necessarily additive). An important novel aspect of our work is that we do not restrict the model class, but instead put general non-parametric priors on this function and on the distribution of the cause. The causal direction can then be inferred by using standard Bayesian model selection. We evaluate our approach on synthetic data and real-world data and report encouraging results.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Structural and Relational Data Mining for Systems Biology Applications

Georgii, E.

Eberhard Karls Universität Tübingen, Germany , 2010 (phdthesis)

ei

Web [BibTex]

Web [BibTex]


no image
JigPheno: Semantic Feature Extraction in biological images

Karaletsos, T., Stegle, O., Winn, J., Borgwardt, K.

In NIPS, Workshop on Machine Learning in Computational Biology, 2010 (inproceedings)

ei

[BibTex]

[BibTex]


no image
Nonparametric Tree Graphical Models

Song, L., Gretton, A., Guestrin, C.

In Proceedings of the 13th International Conference on Artificial Intelligence and Statistics, Volume 9 , pages: 765-772, (Editors: YW Teh and M Titterington ), JMLR, AISTATS, 2010 (inproceedings)

ei

PDF [BibTex]

PDF [BibTex]


no image
Novel machine learning methods for MHC Class I binding prediction

Widmer, C., Toussaint, N., Altun, Y., Kohlbacher, O., Rätsch, G.

In Pattern Recognition in Bioinformatics, pages: 98-109, (Editors: TMH Dijkstra and E Tsivtsivadze and E Marchiori and T Heskes), Springer, Berlin, Germany, 5th IAPR International Conference, PRIB, 2010 (inproceedings)

ei

DOI [BibTex]

DOI [BibTex]


no image
Bootstrapping Apprenticeship Learning

Boularias, A., Chaib-Draa, B.

In Advances in Neural Information Processing Systems 23, pages: 289-297, (Editors: Lafferty, J. , C. K.I. Williams, J. Shawe-Taylor, R. S. Zemel, A. Culotta), Curran, Red Hook, NY, USA, Twenty-Fourth Annual Conference on Neural Information Processing Systems (NIPS), 2010 (inproceedings)

Abstract
We consider the problem of apprenticeship learning where the examples, demonstrated by an expert, cover only a small part of a large state space. Inverse Reinforcement Learning (IRL) provides an efficient tool for generalizing the demonstration, based on the assumption that the expert is maximizing a utility function that is a linear combination of state-action features. Most IRL algorithms use a simple Monte Carlo estimation to approximate the expected feature counts under the expert's policy. In this paper, we show that the quality of the learned policies is highly sensitive to the error in estimating the feature counts. To reduce this error, we introduce a novel approach for bootstrapping the demonstration by assuming that: (i), the expert is (near-)optimal, and (ii), the dynamics of the system is known. Empirical results on gridworlds and car racing problems show that our approach is able to learn good policies from a small number of demonstrations.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Distinguishing Causes from Effects using Nonlinear Acyclic Causal Models

Zhang, K., Hyvärinen, A.

In JMLR Workshop and Conference Proceedings, Volume 6, pages: 157-164, (Editors: I Guyon and D Janzing and B Schölkopf), MIT Press, Cambridge, MA, USA, Causality: Objectives and Assessment (NIPS Workshop), 2010 (inproceedings)

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Learning the Reward Model of Dialogue POMDPs

Boularias, A., Chinaei, H., Chaib-Draa, B.

NIPS Workshop on Machine Learning for Assistive Technology (MLAT-2010), 2010 (poster)

ei

[BibTex]

[BibTex]


no image
Population Coding in the Visual System: Statistical Methods and Theory

Macke, J.

Eberhard Karls Universität Tübingen, Germany, 2010 (phdthesis)

ei

[BibTex]

[BibTex]


no image
Bayesian Methods for Neural Data Analysis

Gerwinn, S.

Eberhard Karls Universität Tübingen, Germany, 2010 (phdthesis)

ei

Web [BibTex]

Web [BibTex]


no image
Consistent Nonparametric Tests of Independence

Gretton, A., Györfi, L.

Journal of Machine Learning Research, 11, pages: 1391-1423, 2010 (article)

ei

PDF [BibTex]

PDF [BibTex]


no image
Characteristic Kernels on Structured Domains Excel in Robotics and Human Action Recognition

Danafar, S., Gretton, A., Schmidhuber, J.

In Machine Learning and Knowledge Discovery in Databases, LNCS Vol. 6321, pages: 264-279, (Editors: JL Balcázar and F Bonchi and A Gionis and M Sebag), Springer, Berlin, Germany, ECML PKDD, 2010 (inproceedings)

Abstract
Embedding probability distributions into a sufficiently rich (characteristic) reproducing kernel Hilbert space enables us to take higher order statistics into account. Characterization also retains effective statistical relation between inputs and outputs in regression and classification. Recent works established conditions for characteristic kernels on groups and semigroups. Here we study characteristic kernels on periodic domains, rotation matrices, and histograms. Such structured domains are relevant for homogeneity testing, forward kinematics, forward dynamics, inverse dynamics, etc. Our kernel-based methods with tailored characteristic kernels outperform previous methods on robotics problems and also on a widely used benchmark for recognition of human actions in videos.

ei

DOI [BibTex]

DOI [BibTex]


no image
Inferring latent task structure for Multitask Learning by Multiple Kernel Learning

Widmer, C., Toussaint, N., Altun, Y., Rätsch, G.

BMC Bioinformatics, 11 Suppl 8, pages: S5, 2010 (article)

Abstract
The lack of sufficient training data is the limiting factor for many Machine Learning applications in Computational Biology. If data is available for several different but related problem domains, Multitask Learning algorithms can be used to learn a model based on all available information. In Bioinformatics, many problems can be cast into the Multitask Learning scenario by incorporating data from several organisms. However, combining information from several tasks requires careful consideration of the degree of similarity between tasks. Our proposed method simultaneously learns or refines the similarity between tasks along with the Multitask Learning classifier. This is done by formulating the Multitask Learning problem as Multiple Kernel Learning, using the recently published q-Norm MKL algorithm.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Movement extraction by detecting dynamics switches and repetitions

Chiappa, S., Peters, J.

In Advances in Neural Information Processing Systems 23, pages: 388-396, (Editors: Lafferty, J. , C. K.I. Williams, J. Shawe-Taylor, R. S. Zemel, A. Culotta), Curran, Red Hook, NY, USA, Twenty-Fourth Annual Conference on Neural Information Processing Systems (NIPS), 2010 (inproceedings)

Abstract
Many time-series such as human movement data consist of a sequence of basic actions, e.g., forehands and backhands in tennis. Automatically extracting and characterizing such actions is an important problem for a variety of different applications. In this paper, we present a probabilistic segmentation approach in which an observed time-series is modeled as a concatenation of segments corresponding to different basic actions. Each segment is generated through a noisy transformation of one of a few hidden trajectories representing different types of movement, with possible time re-scaling. We analyze three different approximation methods for dealing with model intractability, and demonstrate how the proposed approach can successfully segment table tennis movements recorded using a robot arm as haptic input device.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Approaches Based on Support Vector Machine to Classification of Remote Sensing Data

Bruzzone, L., Persello, C.

In Handbook of Pattern Recognition and Computer Vision, pages: 329-352, (Editors: Chen, C.H.), ICP, London, UK, 2010 (inbook)

Abstract
This chapter presents an extensive and critical review on the use of kernel methods and in particular of support vector machines (SVMs) in the classification of remote-sensing (RS) data. The chapter recalls the mathematical formulation and the main theoretical concepts related to SVMs, and discusses the motivations at the basis of the use of SVMs in remote sensing. A review on the main applications of SVMs in classification of remote sensing is given, presenting a literature survey on the use of SVMs for the analysis of different kinds of RS images. In addition, the most recent methodological developments related to SVM-based classification techniques in RS are illustrated by focusing on semisupervised, domain adaptation, and context sensitive approaches. Finally, the most promising research directions on SVM in RS are identified and discussed.

ei

Web [BibTex]

Web [BibTex]


no image
Space-Variant Single-Image Blind Deconvolution for Removing Camera Shake

Harmeling, S., Hirsch, M., Schölkopf, B.

In Advances in Neural Information Processing Systems 23, pages: 829-837, (Editors: J Lafferty and CKI Williams and J Shawe-Taylor and RS Zemel and A Culotta), Curran, Red Hook, NY, USA, 24th Annual Conference on Neural Information Processing Systems (NIPS), 2010 (inproceedings)

Abstract
Modelling camera shake as a space-invariant convolution simplifies the problem of removing camera shake, but often insufficiently models actual motion blur such as those due to camera rotation and movements outside the sensor plane or when objects in the scene have different distances to the camera. In an effort to address these limitations, (i) we introduce a taxonomy of camera shakes, (ii) we build on a recently introduced framework for space-variant filtering by Hirsch et al. and a fast algorithm for single image blind deconvolution for space-invariant filters by Cho and Lee to construct a method for blind deconvolution in the case of space-variant blur, and (iii), we present an experimental setup for evaluation that allows us to take images with real camera shake while at the same time recording the spacevariant point spread function corresponding to that blur. Finally, we demonstrate that our method is able to deblur images degraded by spatially-varying blur originating from real camera shake, even without using additionally motion sensor information.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Getting lost in space: Large sample analysis of the resistance distance

von Luxburg, U., Radl, A., Hein, M.

In Advances in Neural Information Processing Systems 23, pages: 2622-2630, (Editors: Lafferty, J. , C. K.I. Williams, J. Shawe-Taylor, R. S. Zemel, A. Culotta), Curran, Red Hook, NY, USA, Twenty-Fourth Annual Conference on Neural Information Processing Systems (NIPS), 2010 (inproceedings)

Abstract
The commute distance between two vertices in a graph is the expected time it takes a random walk to travel from the first to the second vertex and back. We study the behavior of the commute distance as the size of the underlying graph increases. We prove that the commute distance converges to an expression that does not take into account the structure of the graph at all and that is completely meaningless as a distance function on the graph. Consequently, the use of the raw commute distance for machine learning purposes is strongly discouraged for large graphs and in high dimensions. As an alternative we introduce the amplified commute distance that corrects for the undesired large sample effects.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Distinguishing between cause and effect

Mooij, J., Janzing, D.

In JMLR Workshop and Conference Proceedings: Volume 6, pages: 147-156, (Editors: Guyon, I. , D. Janzing, B. Schölkopf), MIT Press, Cambridge, MA, USA, Causality: Objectives and Assessment (NIPS Workshop) , 2010 (inproceedings)

Abstract
We describe eight data sets that together formed the CauseEffectPairs task in the Causality Challenge #2: Pot-Luck competition. Each set consists of a sample of a pair of statistically dependent random variables. One variable is known to cause the other one, but this information was hidden from the participants; the task was to identify which of the two variables was the cause and which one the effect, based upon the observed sample. The data sets were chosen such that we expect common agreement on the ground truth. Even though part of the statistical dependences may also be due to hidden common causes, common sense tells us that there is a significant cause-effect relation between the two variables in each pair. We also present baseline results using three different causal inference methods.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Clustering with Neighborhood Graphs

Maier, M.

Universität des Saarlandes, Saarbrücken, Germany, 2010 (phdthesis)

ei

Web [BibTex]

Web [BibTex]


no image
Information-theoretic inference of common ancestors

Steudel, B., Ay, N.

Computing Research Repository (CoRR), abs/1010.5720, pages: 18, 2010 (techreport)

ei

Web [BibTex]

Web [BibTex]


no image
Erste Erfahrungen bei der Beurteilung hämato-onkologischer Krankheitsmanifestationen an den Extremitäten mit einem PET/MRT-Hybridsystem.

Sauter, A., Boss, A., Kolb, A., Mantlik, F., Bethge, W., Kanz, L., Pfannenberg, C., Stegger, L., Pichler, B., Claussen, C., Horger, M.

Thieme Verlag, Stuttgart, Germany, 91. Deutscher R{\"o}ntgenkongress, 2010 (poster)

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Detecting the mincut in sparse random graphs

Köhler, R.

Eberhard Karls Universität Tübingen, Germany, 2010 (diplomathesis)

ei

[BibTex]

[BibTex]


no image
A wider view on encoding and decoding in the visual brain-computer interface speller system

Martens, S.

Eberhard Karls Universität Tübingen, Germany, 2010 (phdthesis)

ei

[BibTex]


no image
Kernel Methods for Detecting the Direction of Time Series

Peters, J., Janzing, D., Gretton, A., Schölkopf, B.

In Advances in Data Analysis, Data Handling and Business Intelligence, pages: 57-66, (Editors: A Fink and B Lausen and W Seidel and A Ultsch), Springer, Berlin, Germany, 32nd Annual Conference of the Gesellschaft f{\"u}r Klassifikation e.V. (GfKl), 2010 (inproceedings)

Abstract
We propose two kernel based methods for detecting the time direction in empirical time series. First we apply a Support Vector Machine on the finite-dimensional distributions of the time series (classification method) by embedding these distributions into a Reproducing Kernel Hilbert Space. For the ARMA method we fit the observed data with an autoregressive moving average process and test whether the regression residuals are statistically independent of the past values. Whenever the dependence in one direction is significantly weaker than in the other we infer the former to be the true one. Both approaches were able to detect the direction of the true generating model for simulated data sets. We also applied our tests to a large number of real world time series. The ARMA method made a decision for a significant fraction of them, in which it was mostly correct, while the classification method did not perform as well, but still exceeded chance level.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Switched Latent Force Models for Movement Segmentation

Alvarez, M., Peters, J., Schölkopf, B., Lawrence, N.

In Advances in neural information processing systems 23, pages: 55-63, (Editors: J Lafferty and CKI Williams and J Shawe-Taylor and RS Zemel and A Culotta), Curran, Red Hook, NY, USA, 24th Annual Conference on Neural Information Processing Systems (NIPS), 2010 (inproceedings)

Abstract
Latent force models encode the interaction between multiple related dynamical systems in the form of a kernel or covariance function. Each variable to be modeled is represented as the output of a differential equation and each differential equation is driven by a weighted sum of latent functions with uncertainty given by a Gaussian process prior. In this paper we consider employing the latent force model framework for the problem of determining robot motor primitives. To deal with discontinuities in the dynamical systems or the latent driving force we introduce an extension of the basic latent force model, that switches between different latent functions and potentially different dynamical systems. This creates a versatile representation for robot movements that can capture discrete changes and non-linearities in the dynamics. We give illustrative examples on both synthetic data and for striking movements recorded using a BarrettWAM robot as haptic input device. Our inspiration is robot motor primitives, but we expect our model to have wide application for dynamical systems including models for human motion capture data and systems biology.

ei

PDF Web [BibTex]

PDF Web [BibTex]

2002


no image
Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond

Schölkopf, B., Smola, A.

pages: 644, Adaptive Computation and Machine Learning, MIT Press, Cambridge, MA, USA, December 2002, Parts of this book, including an introduction to kernel methods, can be downloaded here. (book)

Abstract
In the 1990s, a new type of learning algorithm was developed, based on results from statistical learning theory: the Support Vector Machine (SVM). This gave rise to a new class of theoretically elegant learning machines that use a central concept of SVMs-kernels—for a number of learning tasks. Kernel machines provide a modular framework that can be adapted to different tasks and domains by the choice of the kernel function and the base algorithm. They are replacing neural networks in a variety of fields, including engineering, information retrieval, and bioinformatics. Learning with Kernels provides an introduction to SVMs and related kernel methods. Although the book begins with the basics, it also includes the latest research. It provides all of the concepts necessary to enable a reader equipped with some basic mathematical knowledge to enter the world of machine learning using theoretically well-founded yet easy-to-use kernel algorithms and to understand and apply the powerful algorithms that have been developed over the last few years.

ei

Web [BibTex]

2002


Web [BibTex]


no image
Surface-slant-from-texture discrimination: Effects of slant level and texture type

Rosas, P., Wichmann, F., Wagemans, J.

Journal of Vision, 2(7):300, Second Annual Meeting of the Vision Sciences Society (VSS), November 2002 (poster)

Abstract
The problem of surface-slant-from-texture was studied psychophysically by measuring the performances of five human subjects in a slant-discrimination task with a number of different types of textures: uniform lattices, randomly displaced lattices, polka dots, Voronoi tessellations, orthogonal sinusoidal plaid patterns, fractal or 1/f noise, “coherent” noise and a “diffusion-based” texture (leopard skin-like). The results show: (1) Improving performance with larger slants for all textures. (2) A “non-symmetrical” performance around a particular slant characterized by a psychometric function that is steeper in the direction of the more slanted orientation. (3) For sufficiently large slants (66 deg) there are no major differences in performance between any of the different textures. (4) For slants at 26, 37 and 53 degrees, however, there are marked differences between the different textures. (5) The observed differences in performance across textures for slants up to 53 degrees are systematic within subjects, and nearly so across them. This allows a rank-order of textures to be formed according to their “helpfulness” — that is, how easy the discrimination task is when a particular texture is mapped on the surface. Polka dots tended to allow the best slant discrimination performance, noise patterns the worst up to the large slant of 66 degrees at which performance was almost independent of the particular texture chosen. Finally, our large number of 2AFC trials (approximately 2800 trials per texture across subjects) and associated tight confidence intervals may enable us to find out about which statistical properties of the textures could be responsible for surface-slant-from-texture estimation, with the ultimate goal of being able to predict observer performance for any arbitrary texture.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Modelling Contrast Transfer in Spatial Vision

Wichmann, F.

Journal of Vision, 2(10):7, Second Annual Meeting of the Vision Sciences Society (VSS), November 2002 (poster)

Abstract
Much of our information about spatial vision comes from detection experiments involving low-contrast stimuli. Contrast discrimination experiments provide one way to explore the visual system's response to stimuli of higher contrast, the results of which allow different models of contrast processing (e.g. energy versus gain-control models) to be critically assessed (Wichmann & Henning, 1999). Studies of detection and discrimination using pulse train stimuli in noise, on the other hand, make predictions about the number, position and properties of noise sources within the processing stream (Henning, Bird & Wichmann, 2002). Here I report modelling results combining data from both sinusoidal and pulse train experiments in and without noise to arrive at a more tightly constrained model of early spatial vision.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Gender Classification of Human Faces

Graf, A., Wichmann, F.

In Biologically Motivated Computer Vision, pages: 1-18, (Editors: Bülthoff, H. H., S.W. Lee, T. A. Poggio and C. Wallraven), Springer, Berlin, Germany, Second International Workshop on Biologically Motivated Computer Vision (BMCV), November 2002 (inproceedings)

Abstract
This paper addresses the issue of combining pre-processing methods—dimensionality reduction using Principal Component Analysis (PCA) and Locally Linear Embedding (LLE)—with Support Vector Machine (SVM) classification for a behaviorally important task in humans: gender classification. A processed version of the MPI head database is used as stimulus set. First, summary statistics of the head database are studied. Subsequently the optimal parameters for LLE and the SVM are sought heuristically. These values are then used to compare the original face database with its processed counterpart and to assess the behavior of a SVM with respect to changes in illumination and perspective of the face images. Overall, PCA was superior in classification performance and allowed linear separability.

ei

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


no image
Insect-Inspired Estimation of Self-Motion

Franz, MO., Chahl, JS.

In Biologically Motivated Computer Vision, (2525):171-180, LNCS, (Editors: Bülthoff, H.H. , S.W. Lee, T.A. Poggio, C. Wallraven), Springer, Berlin, Germany, Second International Workshop on Biologically Motivated Computer Vision (BMCV), November 2002 (inproceedings)

Abstract
The tangential neurons in the fly brain are sensitive to the typical optic flow patterns generated during self-motion. In this study, we examine whether a simplified linear model of these neurons can be used to estimate self-motion from the optic flow. We present a theory for the construction of an optimal linear estimator incorporating prior knowledge about the environment. The optimal estimator is tested on a gantry carrying an omnidirectional vision sensor. The experiments show that the proposed approach leads to accurate and robust estimates of rotation rates, whereas translation estimates turn out to be less reliable.

ei

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


no image
Pulse train detection and discrimination in pink noise

Henning, G., Wichmann, F., Bird, C.

Journal of Vision, 2(7):229, Second Annual Meeting of the Vision Sciences Society (VSS), November 2002 (poster)

Abstract
Much of our information about spatial vision comes from detection experiments involving low-contrast stimuli. Contrast discrimination experiments provide one way to explore the visual system's response to stimuli of higher contrast. We explored both detection and contrast discrimination performance with sinusoidal and "pulse-train" (or line) gratings. Both types of grating had a fundamental spatial frequency of 2.09-c/deg but the pulse-train, ideally, contains, in addition to its fundamental component, all the harmonics of the fundamental. Although the 2.09-c/deg pulse-train produced on the display was measured and shown to contain at least 8 harmonics at equal contrast, it was no more detectable than its most detectable component; no benefit from having additional information at the harmonics was measurable. The addition of broadband "pink" noise, designed to equalize the detectability of the components of the pulse train, made it about a factor of four more detectable than any of its components. However, in contrast-discrimination experiments, with an in-phase pedestal or masking grating of the same form and phase as the signal and 15% contrast, the noise did not improve the discrimination performance of the pulse train relative to that of its sinusoidal components. In contrast, a 2.09-c/deg "super train," constructed to have 8 equally detectable harmonics, was a factor of five more detectable than any of its components. We discuss the implications of these observations for models of early vision in particular the implications for possible sources of internal noise.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Combining sensory Information to Improve Visualization

Ernst, M., Banks, M., Wichmann, F., Maloney, L., Bülthoff, H.

In Proceedings of the Conference on Visualization ‘02 (VIS ‘02), pages: 571-574, (Editors: Moorhead, R. , M. Joy), IEEE, Piscataway, NJ, USA, IEEE Conference on Visualization (VIS '02), October 2002 (inproceedings)

Abstract
Seemingly effortlessly the human brain reconstructs the three-dimensional environment surrounding us from the light pattern striking the eyes. This seems to be true across almost all viewing and lighting conditions. One important factor for this apparent easiness is the redundancy of information provided by the sensory organs. For example, perspective distortions, shading, motion parallax, or the disparity between the two eyes' images are all, at least partly, redundant signals which provide us with information about the three-dimensional layout of the visual scene. Our brain uses all these different sensory signals and combines the available information into a coherent percept. In displays visualizing data, however, the information is often highly reduced and abstracted, which may lead to an altered perception and therefore a misinterpretation of the visualized data. In this panel we will discuss mechanisms involved in the combination of sensory information and their implications for simulations using computer displays, as well as problems resulting from current display technology such as cathode-ray tubes.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Incorporating Invariances in Non-Linear Support Vector Machines

Chapelle, O., Schölkopf, B.

In Advances in Neural Information Processing Systems 14, pages: 609-616, (Editors: TG Dietterich and S Becker and Z Ghahramani), MIT Press, Cambridge, MA, USA, 15th Annual Neural Information Processing Systems Conference (NIPS), September 2002 (inproceedings)

Abstract
The choice of an SVM kernel corresponds to the choice of a representation of the data in a feature space and, to improve performance, it should therefore incorporate prior knowledge such as known transformation invariances. We propose a technique which extends earlier work and aims at incorporating invariances in nonlinear kernels. We show on a digit recognition task that the proposed approach is superior to the Virtual Support Vector method, which previously had been the method of choice.

ei

PDF Web [BibTex]

PDF Web [BibTex]