Header logo is de


2016


no image
Empirical Inference (2010-2015)
Scientific Advisory Board Report, 2016 (misc)

ei

pdf [BibTex]

2016


pdf [BibTex]


no image
Pymanopt: A Python Toolbox for Optimization on Manifolds using Automatic Differentiation

Townsend, J., Koep, N., Weichwald, S.

Journal of Machine Learning Research, 17(137):1-5, 2016 (article)

ei

PDF Arxiv Code Project page link (url) [BibTex]


no image
A Causal, Data-driven Approach to Modeling the Kepler Data

Wang, D., Hogg, D. W., Foreman-Mackey, D., Schölkopf, B.

Publications of the Astronomical Society of the Pacific, 128(967):094503, 2016 (article)

ei

link (url) DOI Project Page [BibTex]

link (url) DOI Project Page [BibTex]


no image
Probabilistic Inference for Determining Options in Reinforcement Learning

Daniel, C., van Hoof, H., Peters, J., Neumann, G.

Machine Learning, Special Issue, 104(2):337-357, (Editors: Gärtner, T., Nanni, M., Passerini, A. and Robardet, C.), European Conference on Machine Learning im Machine Learning, Journal Track, 2016, Best Student Paper Award of ECML-PKDD 2016 (article)

am ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


Deep Discrete Flow
Deep Discrete Flow

Güney, F., Geiger, A.

Asian Conference on Computer Vision (ACCV), 2016 (conference) Accepted

avg ps

pdf suppmat Project Page [BibTex]

pdf suppmat Project Page [BibTex]


Weak Supervision for Detecting Object Classes from Activities
Weak Supervision for Detecting Object Classes from Activities

Srikantha, A., Gall, J.

Computer Vision and Image Understanding (CVIU), Elsevier, 2016 (article) In press

elsevier preprint link (url) DOI [BibTex]

elsevier preprint link (url) DOI [BibTex]


Moving-horizon Nonlinear Least Squares-based Multirobot Cooperative Perception
Moving-horizon Nonlinear Least Squares-based Multirobot Cooperative Perception

Ahmad, A., Bülthoff, H.

Robotics and Autonomous Systems, 83, pages: 275-286, 2016 (article)

Abstract
In this article we present an online estimator for multirobot cooperative localization and target tracking based on nonlinear least squares minimization. Our method not only makes the rigorous optimization-based approach applicable online but also allows the estimator to be stable and convergent. We do so by employing a moving horizon technique to nonlinear least squares minimization and a novel design of the arrival cost function that ensures stability and convergence of the estimator. Through an extensive set of real robot experiments, we demonstrate the robustness of our method as well as the optimality of the arrival cost function. The experiments include comparisons of our method with i) an extended Kalman filter-based online-estimator and ii) an offline-estimator based on full-trajectory nonlinear least squares.

ps

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Novel Random Forest based framework enables the segmentation of cerebral ischemic regions using multiparametric MRI

Katiyar, P., Castaneda, S., Patzwaldt, K., Russo, F., Poli, S., Ziemann, U., Disselhorst, J. A., Pichler, B. J.

European Molecular Imaging Meeting, 2016 (poster)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
PGO wave-triggered functional MRI: mapping the networks underlying synaptic consolidation

Logothetis, N. K., Murayama, Y., Ramirez-Villegas, J. F., Besserve, M., Evrard, H.

47th Annual Meeting of the Society for Neuroscience (Neuroscience), 2016 (poster)

ei

[BibTex]

[BibTex]


no image
Unsupervised Domain Adaptation in the Wild : Dealing with Asymmetric Label Set

Mittal, A., Raj, A., Namboodiri, V. P., Tuytelaars, T.

2016 (misc)

ei

Arxiv [BibTex]

Arxiv [BibTex]


no image
Designing Human-Robot Exercise Games for Baxter

Fitter, N. T., Hawkes, D. T., Johnson, M. J., Kuchenbecker, K. J.

2016, Late-breaking results report presented at the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (misc)

hi

Project Page [BibTex]

Project Page [BibTex]


no image
Influence of initial fixation position in scene viewing

Rothkegel, L. O. M., Trukenbrod, H. A., Schütt, H. H., Wichmann, F. A., Engbert, R.

Vision Research, 129, pages: 33-49, 2016 (article)

ei

link (url) DOI Project Page [BibTex]

link (url) DOI Project Page [BibTex]


no image
Testing models of peripheral encoding using metamerism in an oddity paradigm

Wallis, T. S. A., Bethge, M., Wichmann, F. A.

Journal of Vision, 16(2), 2016 (article)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Modeling Confounding by Half-Sibling Regression

Schölkopf, B., Hogg, D., Wang, D., Foreman-Mackey, D., Janzing, D., Simon-Gabriel, C. J., Peters, J.

Proceedings of the National Academy of Science, 113(27):7391-7398, 2016 (article)

ei

Code link (url) DOI Project Page [BibTex]

Code link (url) DOI Project Page [BibTex]


Dual Control for Approximate Bayesian Reinforcement Learning
Dual Control for Approximate Bayesian Reinforcement Learning

Klenske, E. D., Hennig, P.

Journal of Machine Learning Research, 17(127):1-30, 2016 (article)

ei pn

PDF link (url) [BibTex]

PDF link (url) [BibTex]


no image
A Population Based Gaussian Mixture Model Incorporating 18F-FDG-PET and DW-MRI Quantifies Tumor Tissue Classes

Divine, M. R., Katiyar, P., Kohlhofer, U., Quintanilla-Martinez, L., Disselhorst, J. A., Pichler, B. J.

Journal of Nuclear Medicine, 57(3):473-479, 2016 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Annales des Concours 2016 MP Mathématiques, Informatique

Batog, G., Dumont, J., Puyhaubert, V.

In corrigés des problèmes posés aux concours CCP, Centrale/Supélec, Mines/Ponts, X/ENS, 2016 (inbook)

H&K Éditions [BibTex]

H&K Éditions [BibTex]


no image
Psychophysical Power Optimization of Friction Modulation for Tactile Interfaces

Sednaoui, T., Vezzoli, E., Gueorguiev, D., Amberg, M., Chappaz, C., Lemaire-Semail, B.

In Haptics: Perception, Devices, Control, and Applications, pages: 354-362, Springer International Publishing, Cham, 2016 (inproceedings)

Abstract
Ultrasonic vibration and electrovibration can modulate the friction between a surface and a sliding finger. The power consumption of these devices is critical to their integration in modern mobile devices such as smartphones. This paper presents a simple control solution to reduce up to 68.8 {\%} this power consumption by taking advantage of the human perception limits.

hi

[BibTex]

[BibTex]


no image
Phase transitions and optimal algorithms in high-dimensional Gaussian mixture clustering

Lesieur, T., De Bacco, C., Banks, J., Krzakala, F., Moore, C., Zdeborová, L.

In Communication, Control, and Computing (Allerton), 2016 54th Annual Allerton Conference on, pages: 601-608, 2016 (inproceedings)

pio

Preprint link (url) [BibTex]

Preprint link (url) [BibTex]


no image
Proactive Human-Robot Collaboration with Interaction Primitives

Maeda, G., Maloo, A., Ewerton, M., Lioutikov, R., Peters, J.

9th International Workshop on Human-Friendly Robotics (HFR), pages: 40-45, 2016 (conference)

link (url) [BibTex]

link (url) [BibTex]


no image
Sustainable effects of simulator-based training on ecological driving

Lüderitz, C., Wirzberger, M., Karrer-Gauß, K.

In Advances in Ergonomic Design of Systems, Products and Processes. Proceedings of the Annual Meeting of the GfA 2015, pages: 463-475, Springer, 2016 (inbook)

Abstract
Simulation-based driver training offers a promising way to teach ecological driving behavior under controlled, comparable conditions. In a study with 23 professional drivers, we tested the effectiveness of such training. The driving behavior of a training group in a simulated drive with and without instructions were compared. Ten weeks later, a repetition drive tested the long-term effect training. Driving data revealed reduced fuel consumption by ecological driving in both the guided and repetition drives. Driving time decreased significantly in the training and did not differ from driving time after 10 weeks. Results did not achieve significance for transfer to test drives in real traffic situations. This may be due to the small sample size and biased data as a result of unusual driving behavior. Finally, recent and promising approaches to support drivers in maintaining eco-driving styles beyond training situations are outlined.

re

DOI [BibTex]

DOI [BibTex]


no image
Nonlinear functional causal models for distinguishing cause from effect

Zhang, K., Hyvärinen, A.

In Statistics and Causality: Methods for Applied Empirical Research, pages: 185-201, 8, 1st, (Editors: Wolfgang Wiedermann and Alexander von Eye), John Wiley & Sons, Inc., 2016 (inbook)

ei

[BibTex]

[BibTex]


Effect of Waveform in Haptic Perception of Electrovibration on Touchscreens
Effect of Waveform in Haptic Perception of Electrovibration on Touchscreens

Vardar, Y., Güçlü, B., Basdogan, C.

In Haptics: Perception, Devices, Control, and Applications, pages: 190-203, Springer International Publishing, Cham, 2016 (inproceedings)

Abstract
The perceived intensity of electrovibration can be altered by modulating the amplitude, frequency, and waveform of the input voltage signal applied to the conductive layer of a touchscreen. Even though the effect of the first two has been already investigated for sinusoidal signals, we are not aware of any detailed study investigating the effect of the waveform on our haptic perception in the domain of electrovibration. This paper investigates how input voltage waveform affects our haptic perception of electrovibration on touchscreens. We conducted absolute detection experiments using square wave and sinusoidal input signals at seven fundamental frequencies (15, 30, 60, 120, 240, 480 and 1920 Hz). Experimental results depicted the well-known U-shaped tactile sensitivity across frequencies. However, the sensory thresholds were lower for the square wave than the sinusoidal wave at fundamental frequencies less than 60 Hz while they were similar at higher frequencies. Using an equivalent circuit model of a finger-touchscreen system, we show that the sensation difference between the waveforms at low fundamental frequencies can be explained by frequency-dependent electrical properties of human skin and the differential sensitivity of mechanoreceptor channels to individual frequency components in the electrostatic force. As a matter of fact, when the electrostatic force waveforms are analyzed in the frequency domain based on human vibrotactile sensitivity data from the literature [15], the electrovibration stimuli caused by square-wave input signals at all the tested frequencies in this study are found to be detected by the Pacinian psychophysical channel.

hi

vardar_eurohaptics_2016 [BibTex]

vardar_eurohaptics_2016 [BibTex]


Perceiving Systems (2011-2015)
Perceiving Systems (2011-2015)
Scientific Advisory Board Report, 2016 (misc)

ps

pdf [BibTex]

pdf [BibTex]


Shape estimation of subcutaneous adipose tissue using an articulated statistical shape model
Shape estimation of subcutaneous adipose tissue using an articulated statistical shape model

Yeo, S. Y., Romero, J., Loper, M., Machann, J., Black, M.

Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, 0(0):1-8, 2016 (article)

ps

publisher website preprint pdf link (url) DOI Project Page [BibTex]

publisher website preprint pdf link (url) DOI Project Page [BibTex]


Ensuring Ethical Behavior from Autonomous Systems
Ensuring Ethical Behavior from Autonomous Systems

Anderson, M., Anderson, S. L., Berenz, V.

In Artificial Intelligence Applied to Assistive Technologies and Smart Environments, Papers from the 2016 AAAI Workshop, Phoenix, Arizona, USA, February 12, 2016, 2016 (inproceedings)

am

link (url) [BibTex]

link (url) [BibTex]


Probabilistic Duality for Parallel Gibbs Sampling without Graph Coloring
Probabilistic Duality for Parallel Gibbs Sampling without Graph Coloring

Mescheder, L., Nowozin, S., Geiger, A.

Arxiv, 2016 (article)

Abstract
We present a new notion of probabilistic duality for random variables involving mixture distributions. Using this notion, we show how to implement a highly-parallelizable Gibbs sampler for weakly coupled discrete pairwise graphical models with strictly positive factors that requires almost no preprocessing and is easy to implement. Moreover, we show how our method can be combined with blocking to improve mixing. Even though our method leads to inferior mixing times compared to a sequential Gibbs sampler, we argue that our method is still very useful for large dynamic networks, where factors are added and removed on a continuous basis, as it is hard to maintain a graph coloring in this setup. Similarly, our method is useful for parallelizing Gibbs sampling in graphical models that do not allow for graph colorings with a small number of colors such as densely connected graphs.

avg

pdf [BibTex]


no image
Analysis of multiparametric MRI using a semi-supervised random forest framework allows the detection of therapy response in ischemic stroke

Castaneda, S., Katiyar, P., Russo, F., Calaminus, C., Disselhorst, J. A., Ziemann, U., Kohlhofer, U., Quintanilla-Martinez, L., Poli, S., Pichler, B. J.

World Molecular Imaging Conference, 2016 (talk)

ei

link (url) [BibTex]

link (url) [BibTex]


Multi-Person Tracking by Multicuts and Deep Matching
Multi-Person Tracking by Multicuts and Deep Matching

(Winner of the Multi-Object Tracking Challenge ECCV 2016)

Tang, S., Andres, B., Andriluka, M., Schiele, B.

ECCV Workshop on Benchmarking Mutliple Object Tracking, 2016 (conference)

ps

PDF [BibTex]

PDF [BibTex]


no image
Painfree and accurate Bayesian estimation of psychometric functions for (potentially) overdispersed data

Schütt, H. H., Harmeling, S., Macke, J. H., Wichmann, F. A.

Vision Research, 122, pages: 105-123, 2016 (article)

ei

link (url) DOI Project Page [BibTex]

link (url) DOI Project Page [BibTex]


no image
Hydrodynamic simulations of the interaction between giant stars and planets

Staff, J., De Marco, O., Wood, P., Galaviz, P., Passy, J.

Monthly Notices of the Royal Astronomical Society, 458, pages: 832-844, 2016 (article)

DOI [BibTex]

DOI [BibTex]


no image
A cognitive brain–computer interface for patients with amyotrophic lateral sclerosis

Hohmann, M., Fomina, T., Jayaram, V., Widmann, N., Förster, C., Just, J., Synofzik, M., Schölkopf, B., Schöls, L., Grosse-Wentrup, M.

In Brain-Computer Interfaces: Lab Experiments to Real-World Applications, 228(Supplement C):221-239, 8, Progress in Brain Research, (Editors: Damien Coyle), Elsevier, 2016 (incollection)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Peripheral vs. central determinants of vibrotactile adaptation

Klöcker, A., Gueorguiev, D., Thonnard, J. L., Mouraux, A.

Journal of Neurophysiology, 115(2):685-691, 2016, PMID: 26581868 (article)

Abstract
Long-lasting mechanical vibrations applied to the skin induce a reversible decrease in the perception of vibration at the stimulated skin site. This phenomenon of vibrotactile adaptation has been studied extensively, yet there is still no clear consensus on the mechanisms leading to vibrotactile adaptation. In particular, the respective contributions of 1) changes affecting mechanical skin impedance, 2) peripheral processes, and 3) central processes are largely unknown. Here we used direct electrical stimulation of nerve fibers to bypass mechanical transduction processes and thereby explore the possible contribution of central vs. peripheral processes to vibrotactile adaptation. Three experiments were conducted. In the first, adaptation was induced with mechanical vibration of the fingertip (51- or 251-Hz vibration delivered for 8 min, at 40× detection threshold). In the second, we attempted to induce adaptation with transcutaneous electrical stimulation of the median nerve (51- or 251-Hz constant-current pulses delivered for 8 min, at 1.5× detection threshold). Vibrotactile detection thresholds were measured before and after adaptation. Mechanical stimulation induced a clear increase of vibrotactile detection thresholds. In contrast, thresholds were unaffected by electrical stimulation. In the third experiment, we assessed the effect of mechanical adaptation on the detection thresholds to transcutaneous electrical nerve stimuli, measured before and after adaptation. Electrical detection thresholds were unaffected by the mechanical adaptation. Taken together, our results suggest that vibrotactile adaptation is predominantly the consequence of peripheral mechanoreceptor processes and/or changes in biomechanical properties of the skin.

hi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
On designing an active tail for legged robots: simplifying control via decoupling of control objectives

Heim, S. W., Ajallooeian, M., Eckert, P., Vespignani, M., Ijspeert, A. J.

Industrial Robot: An International Journal, 43, pages: 338-346, Emerald Group Publishing Limited, 2016 (article)

dlg

Preprint [BibTex]

Preprint [BibTex]


no image
NimbRo Explorer: Semi-Autonomous Exploration and Mobile Manipulation in Rough Terrain

Stueckler, J., Schwarz, M., Schadler, M., Topalidou-Kyniazopoulou, A., Behnke, S.

Journal of Field Robotics (JFR), 33(4):411-430, Wiley, 2016 (article)

ev

[BibTex]

[BibTex]


no image
Stochastic search with Poisson and deterministic resetting

Bhat, U., De Bacco, C., Redner, S.

Journal of Statistical Mechanics: Theory and Experiment, 2016(8):083401, IOP Publishing, 2016 (article)

pio

Preprint link (url) [BibTex]

Preprint link (url) [BibTex]


no image
Hierarchical Relative Entropy Policy Search

Daniel, C., Neumann, G., Kroemer, O., Peters, J.

Journal of Machine Learning Research, 17(93):1-50, 2016 (article)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
γ‐Conicein und Coniin aus Geflecktem Schierling

Puidokait, M., Graefe, J., Sehl, A., Steinke, K., Siehl, H., Zeller, K., Sicker, D., Berger, S.

Chemie in unserer Zeit, 50(6):382-391, 2016 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Kernel Mean Shrinkage Estimators

Muandet, K., Sriperumbudur, B., Fukumizu, K., Gretton, A., Schölkopf, B.

Journal of Machine Learning Research, 17(48):1-41, 2016 (article)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Learning to Deblur

Schuler, C. J., Hirsch, M., Harmeling, S., Schölkopf, B.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(7):1439-1451, IEEE, 2016 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Transfer Learning in Brain-Computer Interfaces

Jayaram, V., Alamgir, M., Altun, Y., Schölkopf, B., Grosse-Wentrup, M.

IEEE Computational Intelligence Magazine, 11(1):20-31, 2016 (article)

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
MERLiN: Mixture Effect Recovery in Linear Networks

Weichwald, S., Grosse-Wentrup, M., Gretton, A.

IEEE Journal of Selected Topics in Signal Processing, 10(7):1254-1266, 2016 (article)

ei

Arxiv Code PDF DOI Project Page [BibTex]

Arxiv Code PDF DOI Project Page [BibTex]


no image
Causal inference using invariant prediction: identification and confidence intervals

Peters, J., Bühlmann, P., Meinshausen, N.

Journal of the Royal Statistical Society, Series B (Statistical Methodology), 78(5):947-1012, 2016, (with discussion) (article)

ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Causal discovery and inference: concepts and recent methodological advances

Spirtes, P., Zhang, K.

Applied Informatics, 3(3):1-28, 2016 (article)

ei

DOI [BibTex]

DOI [BibTex]