Header logo is de


2017


no image
From Monocular SLAM to Autonomous Drone Exploration

von Stumberg, L., Usenko, V., Engel, J., Stueckler, J., Cremers, D.

In European Conference on Mobile Robots (ECMR), September 2017 (inproceedings)

ev

[BibTex]

2017


[BibTex]


Thumb xl screen shot 2017 06 14 at 2.38.22 pm
Scalable Pneumatic and Tendon Driven Robotic Joint Inspired by Jumping Spiders

Sproewitz, A., Göttler, C., Sinha, A., Caer, C., Öztekin, M. U., Petersen, K., Sitti, M.

In Proceedings 2017 IEEE International Conference on Robotics and Automation (ICRA), pages: 64-70, IEEE, Piscataway, NJ, USA, IEEE International Conference on Robotics and Automation (ICRA), May 2017 (inproceedings)

dlg

Video link (url) DOI Project Page [BibTex]

Video link (url) DOI Project Page [BibTex]


Thumb xl screen shot 2017 06 14 at 2.58.42 pm
Spinal joint compliance and actuation in a simulated bounding quadruped robot

Pouya, S., Khodabakhsh, M., Sproewitz, A., Ijspeert, A.

{Autonomous Robots}, pages: 437–452, Kluwer Academic Publishers, Springer, Dordrecht, New York, NY, Febuary 2017 (article)

dlg

link (url) DOI Project Page [BibTex]

link (url) DOI Project Page [BibTex]


Thumb xl screen shot 2018 02 08 at 12.58.55 pm
Linking Mechanics and Learning

Heim, S., Grimminger, F., Özge, D., Spröwitz, A.

In Proceedings of Dynamic Walking 2017, 2017 (inproceedings)

dlg

[BibTex]

[BibTex]


Thumb xl screen shot 2018 02 08 at 12.58.55 pm
Is Growing Good for Learning?

Heim, S., Spröwitz, A.

Proceedings of the 8th International Symposium on Adaptive Motion of Animals and Machines AMAM2017, 2017 (conference)

dlg

[BibTex]

[BibTex]


no image
Multi-View Deep Learning for Consistent Semantic Mapping with RGB-D Cameras

Ma, L., Stueckler, J., Kerl, C., Cremers, D.

In IEEE International Conference on Intelligent Robots and Systems (IROS), Vancouver, Canada, 2017 (inproceedings)

ev

[BibTex]

[BibTex]


no image
Accurate depth and normal maps from occlusion-aware focal stack symmetry

Strecke, M., Alperovich, A., Goldluecke, B.

In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017 (inproceedings)

ev

link (url) [BibTex]

link (url) [BibTex]


Thumb xl screen shot 2018 02 08 at 1.12.35 pm
Evaluation of the passive dynamics of compliant legs with inertia

Györfi, B.

University of Applied Science Pforzheim, Germany, 2017 (mastersthesis)

dlg

[BibTex]

[BibTex]


no image
Semi-Supervised Deep Learning for Monocular Depth Map Prediction

Kuznietsov, Y., Stueckler, J., Leibe, B.

In IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), 2017 (inproceedings)

ev

[BibTex]

[BibTex]


no image
Shadow and Specularity Priors for Intrinsic Light Field Decomposition

Alperovich, A., Johannsen, O., Strecke, M., Goldluecke, B.

In Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR), 2017 (inproceedings)

ev

link (url) [BibTex]

link (url) [BibTex]


no image
Keyframe-Based Visual-Inertial Online SLAM with Relocalization

Kasyanov, A., Engelmann, F., Stueckler, J., Leibe, B.

In IEEE/RSJ Int. Conference on Intelligent Robots and Systems, IROS, 2017 (inproceedings)

ev

[BibTex]

[BibTex]


no image
SAMP: Shape and Motion Priors for 4D Vehicle Reconstruction

Engelmann, F., Stueckler, J., Leibe, B.

In IEEE Winter Conference on Applications of Computer Vision, WACV, 2017 (inproceedings)

ev

[BibTex]

[BibTex]

2012


no image
Model Learning and Real-Time Tracking Using Multi-Resolution Surfel Maps

Stueckler, J., Behnke, S.

Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), 2012 (conference)

ev

link (url) [BibTex]

2012


link (url) [BibTex]


Thumb xl screen shot 2018 02 03 at 4.20.18 pm
Development of a Minimalistic Pneumatic Quadruped Robot for Fast Locomotion

Narioka, K., Rosendo, A., Spröwitz, A., Hosoda, K.

In Proceedings of the 2012 IEEE International Conference on Robotics and Biomimetics (ROBIO), 2012, pages: 307-311, IEEE, Guangzhou, 2012 (inproceedings)

Abstract
In this paper, we describe the development of the quadruped robot ”Ken” with the minimalistic and lightweight body design for achieving fast locomotion. We use McKibben pneumatic artificial muscles as actuators, providing high frequency and wide stride motion of limbs, also avoiding problems with overheating. We conducted a preliminary experiment, finding out that the robot can swing its limb over 7.5 Hz without amplitude reduction, nor heat problems. Moreover, the robot realized a several steps of bouncing gait by using simple CPG-based open loop controller, indicating that the robot can generate enough torque to kick the ground and limb contraction to avoid stumbling.

dlg

DOI [BibTex]

DOI [BibTex]


Thumb xl screen shot 2018 02 03 at 7.25.55 pm
Locomotion through Reconfiguration based on Motor Primitives for Roombots Self-Reconfigurable Modular Robots

Bonardi, S., Moeckel, R., Spröwitz, A., Vespignani, M., Ijspeert, A. J.

In Robotics; Proceedings of ROBOTIK 2012; 7th German Conference on, pages: 1-6, 2012 (inproceedings)

Abstract
We present the hardware and reconfiguration experiments for an autonomous self-reconfigurable modular robot called Roombots (RB). RB were designed to form the basis for self-reconfigurable furniture. Each RB module contains three degrees of freedom that have been carefully selected to allow a single module to reach any position on a 2-dimensional grid and to overcome concave corners in a 3-dimensional grid. For the first time we demonstrate locomotion capabilities of single RB modules through reconfiguration with real hardware. The locomotion through reconfiguration is controlled by a planner combining the well-known D* algorithm and composed motor primitives. The novelty of our approach is the use of an online running hierarchical planner closely linked to the real hardware.

dlg

link (url) [BibTex]

link (url) [BibTex]


no image
RoboCup@Home: Demonstrating Everyday Manipulation Skills in RoboCup@Home

Stueckler, J., Holz, D., Behnke, S.

IEEE Robotics and Automation Magazine (RAM), 19(2):34-42, 2012 (article)

ev

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Towards Robust Mobility, Flexible Object Manipulation, and Intuitive Multimodal Interaction for Domestic Service Robots

Stueckler, J., Droeschel, D., Gräve, K., Holz, D., Kläß, J., Schreiber, M., Steffens, R., Behnke, S.

In RoboCup 2011, Robot Soccer World Cup XV, pages: 51-62, Springer, 2012 (inbook)

ev

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Bayesian calibration of the hand-eye kinematics of an anthropomorphic robot

Hubert, U., Stueckler, J., Behnke, S.

In Proc. of the 12th IEEE-RAS Int. Conf. on Humanoid Robots (Humanoids), pages: 618-624, November 2012 (inproceedings)

ev

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Shape-Primitive Based Object Recognition and Grasping

Nieuwenhuisen, M., Stueckler, J., Berner, A., Klein, R., Behnke, S.

In Proc. of ROBOTIK, VDE-Verlag, 2012 (inproceedings)

ev

link (url) [BibTex]

link (url) [BibTex]


no image
Semantic mapping using object-class segmentation of RGB-D images

Stueckler, J., Biresev, N., Behnke, S.

In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), pages: 3005-3010, October 2012 (inproceedings)

ev

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Efficient Mobile Robot Navigation using 3D Surfel Grid Maps

Kläß, J., Stueckler, J., Behnke, S.

In Proc. of ROBOTIK, VDE-Verlag, 2012 (inproceedings)

ev

link (url) [BibTex]

link (url) [BibTex]


no image
Integrating depth and color cues for dense multi-resolution scene mapping using RGB-D cameras

Stueckler, J., Behnke, S.

In Proc. of the IEEE Int. Conf. on Multisensor Fusion and Integration for Intelligent Systems (MFI), pages: 162-167, sep 2012 (inproceedings)

ev

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
SURE: Surface Entropy for Distinctive 3D Features

Fiolka, T., Stueckler, J., Klein, D. A., Schulz, D., Behnke, S.

In Proc. of Spatial Cognition, 2012 (inproceedings)

ev

link (url) [BibTex]

link (url) [BibTex]


no image
Robust Real-Time Registration of RGB-D Images using Multi-Resolution Surfel Representations

Stueckler, J., Behnke, S.

In Proc. of ROBOTIK, VDE-Verlag, 2012 (inproceedings)

ev

link (url) [BibTex]

link (url) [BibTex]


no image
Adjustable autonomy for mobile teleoperation of personal service robots

Muszynski, S., Stueckler, J., Behnke, S.

In Proc. of the IEEE Int. Symp. on Robot and Human Interactive Communication, pages: 933-940, sep 2012 (inproceedings)

ev

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Adaptive Multi-cue 3D Tracking of Arbitrary Objects

Garcia, G. M., Klein, D. A., Stueckler, J., Frintrop, S., Cremers, A. B.

In DAGM/OAGM Symposium, 7476, pages: 357-366, Lecture Notes in Computer Science, Springer, 2012 (inproceedings)

ev

[BibTex]

[BibTex]

2008


Thumb xl screen shot 2018 02 03 at 7.04.27 pm
Learning to Move in Modular Robots using Central Pattern Generators and Online Optimization

Spröwitz, A., Moeckel, R., Maye, J., Ijspeert, A. J.

The International Journal of Robotics Research, 27(3-4):423-443, 2008 (article)

Abstract
This article addresses the problem of how modular robotics systems, i.e. systems composed of multiple modules that can be configured into different robotic structures, can learn to locomote. In particular, we tackle the problems of online learning, that is, learning while moving, and the problem of dealing with unknown arbitrary robotic structures. We propose a framework for learning locomotion controllers based on two components: a central pattern generator (CPG) and a gradient-free optimization algorithm referred to as Powell's method. The CPG is implemented as a system of coupled nonlinear oscillators in our YaMoR modular robotic system, with one oscillator per module. The nonlinear oscillators are coupled together across modules using Bluetooth communication to obtain specific gaits, i.e. synchronized patterns of oscillations among modules. Online learning involves running the Powell optimization algorithm in parallel with the CPG model, with the speed of locomotion being the criterion to be optimized. Interesting aspects of the optimization include the fact that it is carried out online, the robots do not require stopping or resetting and it is fast. We present results showing the interesting properties of this framework for a modular robotic system. In particular, our CPG model can readily be implemented in a distributed system, it is computationally cheap, it exhibits limit cycle behavior (temporary perturbations are rapidly forgotten), it produces smooth trajectories even when control parameters are abruptly changed and it is robust against imperfect communication among modules. We also present results of learning to move with three different robot structures. Interesting locomotion modes are obtained after running the optimization for less than 60 minutes.

dlg

link (url) DOI [BibTex]

2008


link (url) DOI [BibTex]


no image
Hierarchical Reactive Control for Humanoid Soccer Robots

Behnke, S., Stueckler, J.

International Journal of Humanoid Robots (IJHR), 5(3):375-396, 2008 (article)

ev

link (url) [BibTex]

link (url) [BibTex]


Thumb xl screen shot 2018 02 03 at 5.40.07 pm
Passive compliant quadruped robot using central pattern generators for locomotion control

Rutishauser, S., Spröwitz, A., Righetti, L., Ijspeert, A. J.

In Proceedings of the 2008 2nd Biennial IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, pages: 710-715, IEEE, Scottsdale, AZ, 2008 (inproceedings)

Abstract
We present a new quadruped robot, “Cheetah”, featuring three-segment pantographic legs with passive compliant knee joints. Each leg has two degrees of freedom - knee and hip joint can be actuated using proximal mounted RC servo motors, force transmission to the knee is achieved by means of a Bowden cable mechanism. Simple electronics to command the actuators from a desktop computer have been designed in order to test the robot. A Central Pattern Generator (CPG) network has been implemented to generate different gaits. A parameter space search was performed and tested on the robot to optimize forward velocity.

dlg

DOI [BibTex]

DOI [BibTex]


Thumb xl screen shot 2018 02 03 at 6.34.37 pm
Graph signature for self-reconfiguration planning

Asadpour, M., Spröwitz, A., Billard, A., Dillenbourg, P., Ijspeert, A. J.

In Proceedings of the 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages: 863-869, IEEE, Nice, 2008 (inproceedings)

Abstract
This project incorporates modular robots as build- ing blocks for furniture that moves and self-reconfigures. The reconfiguration is done using dynamic connection / disconnection of modules and rotations of the degrees of freedom. This paper introduces a new approach to self-reconfiguration planning for modular robots based on the graph signature and the graph edit-distance. The method has been tested in simulation on two type of modules: YaMoR and M-TRAN. The simulation results shows interesting features of the approach, namely rapidly finding a near-optimal solution.

dlg

DOI [BibTex]

DOI [BibTex]


Thumb xl screen shot 2018 02 03 at 6.36.13 pm
An active connection mechanism for modular self-reconfigurable robotic systems based on physical latching

Spröwitz, A., Asadpour, M., Bourquin, Y., Ijspeert, A. J.

In Proceedings on the 2008 IEEE International Conference on Robotics and Automation (ICRA), 2008, pages: 3508-3513, IEEE, Pasadena, CA, 2008 (inproceedings)

Abstract
This article presents a robust and heavy duty physical latching connection mechanism, which can be actuated with DC motors to actively connect and disconnect modular robot units. The special requirements include a lightweight and simple construction providing an active, strong, hermaphrodite, completely retractable connection mechanism with a 90 degree symmetry and a no-energy consumption in the locked state. The mechanism volume is kept small to fit multiple copies into a single modular robot unit and to be used on as many faces of the robot unit as possible. This way several different lattice like modular robot structures are possible. The large selection for dock-able connection positions will likely simplify self-reconfiguration strategies. Tests with the implemented mechanism demonstrate its applicative potential for self-reconfiguring modular robots.

dlg

DOI [BibTex]

DOI [BibTex]


no image
In-lane Localization in Road Networks using Curbs Detected in Omnidirectional Height Images

Stueckler, J., Schulz, H., Behnke, S.

In Proceedings of Robotik 2008, 2008 (inproceedings)

ev

link (url) [BibTex]

link (url) [BibTex]


no image
Orthogonal wall correction for visual motion estimation

Stueckler, J., Behnke, S.

In Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA), pages: 1-6, May 2008 (inproceedings)

ev

link (url) DOI [BibTex]

link (url) DOI [BibTex]