Header logo is de


2020


no image
Vision-based Force Estimation for a da Vinci Instrument Using Deep Neural Networks

Lee, Y., Husin, H. M., Forte, M. P., Lee, S., Kuchenbecker, K. J.

Extended abstract presented as an Emerging Technology ePoster at the Annual Meeting of the Society of American Gastrointestinal and Endoscopic Surgeons (SAGES), Cleveland, Ohio, USA, August 2020 (misc) Accepted

hi

[BibTex]

2020


[BibTex]


no image
Measuring the Costs of Planning

Felso, V., Jain, Y. R., Lieder, F.

CogSci 2020, July 2020 (poster) Accepted

Abstract
Which information is worth considering depends on how much effort it would take to acquire and process it. From this perspective people’s tendency to neglect considering the long-term consequences of their actions (present bias) might reflect that looking further into the future becomes increasingly more effortful. In this work, we introduce and validate the use of Bayesian Inverse Reinforcement Learning (BIRL) for measuring individual differences in the subjective costs of planning. We extend the resource-rational model of human planning introduced by Callaway, Lieder, et al. (2018) by parameterizing the cost of planning. Using BIRL, we show that increased subjective cost for considering future outcomes may be associated with both the present bias and acting without planning. Our results highlight testing the causal effects of the cost of planning on both present bias and mental effort avoidance as a promising direction for future work.

re

[BibTex]

[BibTex]


A Fabric-Based Sensing System for Recognizing Social Touch
A Fabric-Based Sensing System for Recognizing Social Touch

Burns, R. B., Lee, H., Seifi, H., Kuchenbecker, K. J.

Work-in-progress paper (3 pages) presented at the IEEE Haptics Symposium, Washington, DC, USA, March 2020 (misc)

Abstract
We present a fabric-based piezoresistive tactile sensor system designed to detect social touch gestures on a robot. The unique sensor design utilizes three layers of low-conductivity fabric sewn together on alternating edges to form an accordion pattern and secured between two outer high-conductivity layers. This five-layer design demonstrates a greater resistance range and better low-force sensitivity than previous designs that use one layer of low-conductivity fabric with or without a plastic mesh layer. An individual sensor from our system can presently identify six different communication gestures – squeezing, patting, scratching, poking, hand resting without movement, and no touch – with an average accuracy of 90%. A layer of foam can be added beneath the sensor to make a rigid robot more appealing for humans to touch without inhibiting the system’s ability to register social touch gestures.

hi

Project Page [BibTex]

Project Page [BibTex]


Do Touch Gestures Affect How Electrovibration Feels?
Do Touch Gestures Affect How Electrovibration Feels?

Vardar, Y., Kuchenbecker, K. J.

Hands-on demonstration (1 page) presented at the IEEE Haptics Symposium, Washington, DC, USA, March 2020 (misc)

hi

[BibTex]

[BibTex]