Header logo is de


2014


3D Traffic Scene Understanding from Movable Platforms
3D Traffic Scene Understanding from Movable Platforms

Geiger, A., Lauer, M., Wojek, C., Stiller, C., Urtasun, R.

IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 36(5):1012-1025, published, IEEE, Los Alamitos, CA, May 2014 (article)

Abstract
In this paper, we present a novel probabilistic generative model for multi-object traffic scene understanding from movable platforms which reasons jointly about the 3D scene layout as well as the location and orientation of objects in the scene. In particular, the scene topology, geometry and traffic activities are inferred from short video sequences. Inspired by the impressive driving capabilities of humans, our model does not rely on GPS, lidar or map knowledge. Instead, it takes advantage of a diverse set of visual cues in the form of vehicle tracklets, vanishing points, semantic scene labels, scene flow and occupancy grids. For each of these cues we propose likelihood functions that are integrated into a probabilistic generative model. We learn all model parameters from training data using contrastive divergence. Experiments conducted on videos of 113 representative intersections show that our approach successfully infers the correct layout in a variety of very challenging scenarios. To evaluate the importance of each feature cue, experiments using different feature combinations are conducted. Furthermore, we show how by employing context derived from the proposed method we are able to improve over the state-of-the-art in terms of object detection and object orientation estimation in challenging and cluttered urban environments.

avg ps

pdf link (url) [BibTex]

2014


pdf link (url) [BibTex]


no image
Rough Terrain Mapping and Navigation using a Continuously Rotating 2D Laser Scanner

Schadler, M., Stueckler, J., Behnke, S.

Künstliche Intelligenz (KI), 28(2):93-99, Springer, 2014 (article)

ev

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Nonequilibrium statistical mechanics of the heat bath for two Brownian particles

De Bacco, C., Baldovin, F., Orlandini, E., Sekimoto, K.

Physical review letters, 112(18):180605, APS, 2014 (article)

pio

Preprint link (url) [BibTex]

Preprint link (url) [BibTex]


no image
Dense Real-Time Mapping of Object-Class Semantics from RGB-D Video

Stueckler, J., Waldvogel, B., Schulz, H., Behnke, S.

Journal of Real-Time Image Processing (JRTIP), 10(4):599-609, Springer, 2014 (article)

ev

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Multi-Resolution Surfel Maps for Efficient Dense 3D Modeling and Tracking

Stueckler, J., Behnke, S.

Journal of Visual Communication and Image Representation (JVCI), 25(1):137-147, 2014 (article)

ev

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Shortest node-disjoint paths on random graphs

De Bacco, C., Franz, S., Saad, D., Yeung, C. H.

Journal of Statistical Mechanics: Theory and Experiment, 2014(7):P07009, IOP Publishing, 2014 (article)

pio

Preprint link (url) Project Page [BibTex]

Preprint link (url) Project Page [BibTex]

2012


no image
Burn-in, bias, and the rationality of anchoring

Lieder, F., Griffiths, T. L., Goodman, N. D.

Advances in Neural Information Processing Systems 25, pages: 2699-2707, 2012 (article)

Abstract
Bayesian inference provides a unifying framework for addressing problems in machine learning, artificial intelligence, and robotics, as well as the problems facing the human mind. Unfortunately, exact Bayesian inference is intractable in all but the simplest models. Therefore minds and machines have to approximate Bayesian inference. Approximate inference algorithms can achieve a wide range of time-accuracy tradeoffs, but what is the optimal tradeoff? We investigate time-accuracy tradeoffs using the Metropolis-Hastings algorithm as a metaphor for the mind's inference algorithm(s). We find that reasonably accurate decisions are possible long before the Markov chain has converged to the posterior distribution, i.e. during the period known as burn-in. Therefore the strategy that is optimal subject to the mind's bounded processing speed and opportunity costs may perform so few iterations that the resulting samples are biased towards the initial value. The resulting cognitive process model provides a rational basis for the anchoring-and-adjustment heuristic. The model's quantitative predictions are tested against published data on anchoring in numerical estimation tasks. Our theoretical and empirical results suggest that the anchoring bias is consistent with approximate Bayesian inference.

re

link (url) [BibTex]

2012


link (url) [BibTex]


no image
RoboCup@Home: Demonstrating Everyday Manipulation Skills in RoboCup@Home

Stueckler, J., Holz, D., Behnke, S.

IEEE Robotics and Automation Magazine (RAM), 19(2):34-42, 2012 (article)

ev

link (url) DOI [BibTex]

link (url) DOI [BibTex]