Header logo is de
Vorträge

Human Factors Research in Minimally Invasive Surgery

IS Colloquium
  • 23 May 2019 • 11:00 12:00
  • Caroline G. L. Cao, Ph.D.
  • MPI-IS Stuttgart, Heisenbergstr. 3, Room 2P4

Health care is probably the last remaining unsafe critical system. A large proportion of reported medical errors occur in the hospital operating room (OR), a highly complex sociotechnical environment. As technology is being introduced into the OR faster than surgeons can learn to use them, surgical errors result from the unfamiliar instrumentation, increased motoric, perceptual and cognitive demands on the surgeons, as well as the lack of adequate training. Effective technology design for minimally invasive surgery requires an understanding of the system constraints of remote surgery, and the complex interaction between humans and technology in the OR. This talk will describe research activities in the Ergonomics in Remote Environments Laboratory at Wright State University, which address some of these human factors issues.

Organizers: Katherine J. Kuchenbecker

Uri Shalit - TBA

IS Colloquium
  • 08 July 2019 • 11:15 a.m. 12:15 a.m.
  • Uri Shalit

Organizers: Krikamol Muandet

  • Stan Sclaroff

In the first part of the talk, I will describe methods that learn a single family of detectors for object classes that exhibit large within-class variation. One common solution is to use a divide-and-conquer strategy, where the space of possible within-class variations is partitioned, and different detectors are trained for different partitions.

However, these discrete partitions tend to be arbitrary in continuous spaces, and the classifiers have limited power when there are too few training samples in each subclass. To address this shortcoming, explicit feature sharing has been proposed, but it also makes training more expensive. We show that foreground-background classification (detection) and within-class classification of the foreground class (pose estimation) can be jointly solved in a multiplicative form of two kernel functions. One kernel measures similarity for foreground-background classification. The other kernel accounts for latent factors that control within-class variation and implicitly enables feature sharing among foreground training samples. The multiplicative kernel formulation enables feature sharing implicitly; the solution for the optimal sharing is a byproduct of SVM learning.

The resulting detector family is tuned to specific variations in the foreground. The effectiveness of this framework is demonstrated in experiments that involve detection, tracking, and pose estimation of human hands, faces, and vehicles in video.


Dino Sejdinovic - TBA

IS Colloquium
  • Dino Sejdinovic



  • Tim Sullivan

Beginning with a seminal paper of Diaconis (1988), the aim of so-called "probabilistic numerics" is to compute probabilistic solutions to deterministic problems arising in numerical analysis by casting them as statistical inference problems. For example, numerical integration of a deterministic function can be seen as the integration of an unknown/random function, with evaluations of the integrand at the integration nodes proving partial information about the integrand. Advantages offered by this viewpoint include: access to the Bayesian representation of prior and posterior uncertainties; better propagation of uncertainty through hierarchical systems than simple worst-case error bounds; and appropriate accounting for numerical truncation and round-off error in inverse problems, so that the replicability of deterministic simulations is not confused with their accuracy, thereby yielding an inappropriately concentrated Bayesian posterior. This talk will describe recent work on probabilistic numerical solvers for ordinary and partial differential equations, including their theoretical construction, convergence rates, and applications to forward and inverse problems. Joint work with Andrew Stuart (Warwick).

Organizers: Philipp Hennig