Header logo is

Travelling Ultrasonic Wave Enhances Keyclick Sensation

2018

Conference Paper

hi


A realistic keyclick sensation is a serious challenge for haptic feedback since vibrotactile rendering faces the limitation of the absence of contact force as experienced on physical buttons. It has been shown that creating a keyclick sensation is possible with stepwise ultrasonic friction modulation. However, the intensity of the sensation is limited by the impedance of the fingertip and by the absence of a lateral force component external to the finger. In our study, we compare this technique to rendering with an ultrasonic travelling wave, which exerts a lateral force on the fingertip. For both techniques, participants were asked to report the detection (or not) of a keyclick during a forced choice one interval procedure. In experiment 1, participants could press the surface as many time as they wanted for a given trial. In experiment 2, they were constrained to press only once. The results show a lower perceptual threshold for travelling waves. Moreover, participants pressed less times per trial and exerted smaller normal force on the surface. The subjective quality of the sensation was found similar for both techniques. In general, haptic feedback based on travelling ultrasonic waves is promising for applications without lateral motion of the finger.

Author(s): Gueorguiev, David and Kaci, Anis and Amberg, Michel and Giraud, Frédéric and Lemaire-Semail, Betty
Book Title: Haptics: Science, Technology, and Applications
Pages: 302--312
Year: 2018
Publisher: Springer International Publishing

Department(s): Haptic Intelligence
Bibtex Type: Conference Paper (inproceedings)

Address: Cham

BibTex

@inproceedings{10.1007/978-3-319-93399-3_27,
  title = {Travelling Ultrasonic Wave Enhances Keyclick Sensation},
  author = {Gueorguiev, David and Kaci, Anis and Amberg, Michel and Giraud, Fr{\'e}d{\'e}ric and Lemaire-Semail, Betty},
  booktitle = {Haptics: Science, Technology, and Applications},
  pages = {302--312},
  publisher = {Springer International Publishing},
  address = {Cham},
  year = {2018},
  doi = {}
}