Header logo is


2012


Coregistration: Supplemental Material
Coregistration: Supplemental Material

Hirshberg, D., Loper, M., Rachlin, E., Black, M. J.

(No. 4), Max Planck Institute for Intelligent Systems, October 2012 (techreport)

ps

pdf [BibTex]

2012


pdf [BibTex]


Lie Bodies: A Manifold Representation of {3D} Human Shape. Supplemental Material
Lie Bodies: A Manifold Representation of 3D Human Shape. Supplemental Material

Freifeld, O., Black, M. J.

(No. 5), Max Planck Institute for Intelligent Systems, October 2012 (techreport)

ps

pdf Project Page [BibTex]

pdf Project Page [BibTex]


MPI-Sintel Optical Flow Benchmark: Supplemental Material
MPI-Sintel Optical Flow Benchmark: Supplemental Material

Butler, D. J., Wulff, J., Stanley, G. B., Black, M. J.

(No. 6), Max Planck Institute for Intelligent Systems, October 2012 (techreport)

ps

pdf Project Page [BibTex]

pdf Project Page [BibTex]


HUMIM Software for Articulated Tracking
HUMIM Software for Articulated Tracking

Soren Hauberg, Kim S. Pedersen

(01/2012), Department of Computer Science, University of Copenhagen, January 2012 (techreport)

ps

Code PDF [BibTex]

Code PDF [BibTex]


A geometric framework for statistics on trees
A geometric framework for statistics on trees

Aasa Feragen, Mads Nielsen, Soren Hauberg, Pechin Lo, Marleen de Bruijne, Francois Lauze

(11/02), Department of Computer Science, University of Copenhagen, January 2012 (techreport)

ps

PDF [BibTex]

PDF [BibTex]


no image
The Playful Machine - Theoretical Foundation and Practical Realization of Self-Organizing Robots

Der, R., Martius, G.

Springer, Berlin Heidelberg, 2012 (book)

Abstract
Autonomous robots may become our closest companions in the near future. While the technology for physically building such machines is already available today, a problem lies in the generation of the behavior for such complex machines. Nature proposes a solution: young children and higher animals learn to master their complex brain-body systems by playing. Can this be an option for robots? How can a machine be playful? The book provides answers by developing a general principle---homeokinesis, the dynamical symbiosis between brain, body, and environment---that is shown to drive robots to self-determined, individual development in a playful and obviously embodiment-related way: a dog-like robot starts playing with a barrier, eventually jumping or climbing over it; a snakebot develops coiling and jumping modes; humanoids develop climbing behaviors when fallen into a pit, or engage in wrestling-like scenarios when encountering an opponent. The book also develops guided self-organization, a new method that helps to make the playful machines fit for fulfilling tasks in the real world.

al

link (url) [BibTex]


Consumer Depth Cameras for Computer Vision - Research Topics and Applications
Consumer Depth Cameras for Computer Vision - Research Topics and Applications

Fossati, A., Gall, J., Grabner, H., Ren, X., Konolige, K.

Advances in Computer Vision and Pattern Recognition, Springer, 2012 (book)

ps

workshop publisher's site [BibTex]

workshop publisher's site [BibTex]

2008


GNU Octave Manual Version 3
GNU Octave Manual Version 3

John W. Eaton, David Bateman, Soren Hauberg

Network Theory Ltd., October 2008 (book)

ps

Publishers site GNU Octave [BibTex]

2008


Publishers site GNU Octave [BibTex]


Infinite Kernel Learning
Infinite Kernel Learning

Gehler, P., Nowozin, S.

(178), Max Planck Institute, octomber 2008 (techreport)

ps

project page pdf [BibTex]

project page pdf [BibTex]


Incremental nonparametric {Bayesian} regression
Incremental nonparametric Bayesian regression

Wood, F., Grollman, D. H., Heller, K. A., Jenkins, O. C., Black, M. J.

(CS-08-07), Brown University, Department of Computer Science, 2008 (techreport)

ps

pdf [BibTex]

pdf [BibTex]