Header logo is

Bayesian inference for psychometric functions




In psychophysical studies, the psychometric function is used to model the relation between physical stimulus intensity and the observer’s ability to detect or discriminate between stimuli of different intensities. In this study, we propose the use of Bayesian inference to extract the information contained in experimental data to estimate the parameters of psychometric functions. Because Bayesian inference cannot be performed analytically, we describe how a Markov chain Monte Carlo method can be used to generate samples from the posterior distribution over parameters. These samples are used to estimate Bayesian confidence intervals and other characteristics of the posterior distribution. In addition, we discuss the parameterization of psychometric functions and the role of prior distributions in the analysis. The proposed approach is exemplified using artificially generated data and in a case study for real experimental data. Furthermore, we compare our approach with traditional methods based on maximum likelihood parameter estimation combined with bootstrap techniques for confidence interval estimation and find the Bayesian approach to be superior.

Author(s): Kuss, M. and Jäkel, F. and Wichmann, FA.
Journal: Journal of Vision
Volume: 5
Number (issue): 5
Pages: 478-492
Year: 2005
Month: May
Day: 0

Department(s): Empirical Inference
Bibtex Type: Article (article)

Digital: 0
DOI: 10.1167/5.5.8
Language: en
Organization: Max-Planck-Gesellschaft
School: Biologische Kybernetik

Links: PDF


  title = {Bayesian inference for psychometric functions},
  author = {Kuss, M. and J{\"a}kel, F. and Wichmann, FA.},
  journal = {Journal of Vision},
  volume = {5},
  number = {5},
  pages = {478-492},
  organization = {Max-Planck-Gesellschaft},
  school = {Biologische Kybernetik},
  month = may,
  year = {2005},
  month_numeric = {5}