Header logo is

Estimating predictive stimulus features from psychophysical data: The decision image technique applied to human faces




One major challenge in the sensory sciences is to identify the stimulus features on which sensory systems base their computations, and which are predictive of a behavioral decision: they are a prerequisite for computational models of perception. We describe a technique (decision images) for extracting predictive stimulus features using logistic regression. A decision image not only defines a region of interest within a stimulus but is a quantitative template which defines a direction in stimulus space. Decision images thus enable the development of predictive models, as well as the generation of optimized stimuli for subsequent psychophysical investigations. Here we describe our method and apply it to data from a human face classification experiment. We show that decision images are able to predict human responses not only in terms of overall percent correct but also in terms of the probabilities with which individual faces are (mis-) classified by individual observers. We show that the most predictive dimension for gender categorization is neither aligned with the axis defined by the two class-means, nor with the first principal component of all faces-two hypotheses frequently entertained in the literature. Our method can be applied to a wide range of binary classification tasks in vision or other psychophysical contexts.

Author(s): Macke, JH. and Wichmann, FA.
Journal: Journal of Vision
Volume: 10
Number (issue): 5:22
Pages: 1-24
Year: 2010
Month: May
Day: 0

Department(s): Empirical Inference
Research Project(s): Psychophysics and Computational Models of Behaviour
Bibtex Type: Article (article)

Digital: 0
DOI: 10.1167/10.5.22
Language: en
Organization: Max-Planck-Gesellschaft
School: Biologische Kybernetik

Links: Web


  title = {Estimating predictive stimulus features from psychophysical data: The decision image technique applied to human faces},
  author = {Macke, JH. and Wichmann, FA.},
  journal = {Journal of Vision},
  volume = {10},
  number = {5:22},
  pages = {1-24},
  organization = {Max-Planck-Gesellschaft},
  school = {Biologische Kybernetik},
  month = may,
  year = {2010},
  month_numeric = {5}