Header logo is

Microemulsion-Based Soft Bacteria-Driven Microswimmers for Active Cargo Delivery

2017

Article

pi


Biohybrid cell-driven microsystems offer unparalleled possibilities for realization of soft microrobots at the micron scale. Here, we introduce a bacteria-driven microswimmer that combines the active locomotion and sensing capabilities of bacteria with the desirable encapsulation and viscoelastic properties of a soft double-micelle microemulsion for active transport and delivery of cargo (e.g., imaging agents, genes, and drugs) to living cells. Quasi-monodisperse double emulsions were synthesized with an aqueous core that encapsulated the fluorescence imaging agents, as a proof-of-concept cargo in this study, and an outer oil shell that was functionalized with streptavidin for specific and stable attachment of biotin-conjugated Escherichia coli. Motile bacteria effectively propelled the soft microswimmers across a Transwell membrane, actively delivering imaging agents (i.e., dyes) encapsulated inside of the micelles to a monolayer of cultured MCF7 breast cancer and J744A.1 macrophage cells, which enabled real-time, live-cell imaging of cell organelles, namely mitochondria, endoplasmic reticulum, and Golgi body. This in vitro model demonstrates the proof-of-concept feasibility of the proposed soft microswimmers and offers promise for potential biomedical applications in active and/or targeted transport and delivery of imaging agents, drugs, stem cells, siRNA, and therapeutic genes to live tissue in in vitro disease models (e.g., organ-on-a-chip devices) and stagnant or low-flow-velocity fluidic regions of the human body.

Author(s): Singh, Ajay Vikram and Hosseinidoust, Zeinab and Park, Byung-Wook and Yasa, Oncay and Sitti, Metin
Journal: ACS Nano
Volume: 11
Number (issue): 10
Pages: 9759--9769
Year: 2017

Department(s): Physical Intelligence
Research Project(s):
Bibtex Type: Article (article)
Paper Type: Journal

DOI: 10.1021/acsnano.7b02082

BibTex

@article{doi:10.1021/acsnano.7b02082,
  title = {Microemulsion-Based Soft Bacteria-Driven Microswimmers for Active Cargo Delivery},
  author = {Singh, Ajay Vikram and Hosseinidoust, Zeinab and Park, Byung-Wook and Yasa, Oncay and Sitti, Metin},
  journal = {ACS Nano},
  volume = {11},
  number = {10},
  pages = {9759--9769},
  year = {2017},
  doi = {10.1021/acsnano.7b02082}
}