Header logo is


2015


no image
Learning Torque Control in Presence of Contacts using Tactile Sensing from Robot Skin

Calandra, R., Ivaldi, S., Deisenroth, M., Peters, J.

In 15th IEEE-RAS International Conference on Humanoid Robots, pages: 690-695, Humanoids, November 2015 (inproceedings)

am ei

link (url) DOI [BibTex]

2015


link (url) DOI [BibTex]


no image
Evaluation of Interactive Object Recognition with Tactile Sensing

Hoelscher, J., Peters, J., Hermans, T.

In 15th IEEE-RAS International Conference on Humanoid Robots, pages: 310-317, Humanoids, November 2015 (inproceedings)

am ei

DOI [BibTex]

DOI [BibTex]


no image
Optimizing Robot Striking Movement Primitives with Iterative Learning Control

Koc, O., Maeda, G., Neumann, G., Peters, J.

In 15th IEEE-RAS International Conference on Humanoid Robots, pages: 80-87, Humanoids, November 2015 (inproceedings)

am ei

DOI [BibTex]

DOI [BibTex]


no image
A Comparison of Contact Distribution Representations for Learning to Predict Object Interactions

Leischnig, S., Luettgen, S., Kroemer, O., Peters, J.

In 15th IEEE-RAS International Conference on Humanoid Robots, pages: 616-622, Humanoids, November 2015 (inproceedings)

am ei

DOI [BibTex]

DOI [BibTex]


no image
First-Person Tele-Operation of a Humanoid Robot

Fritsche, L., Unverzagt, F., Peters, J., Calandra, R.

In 15th IEEE-RAS International Conference on Humanoid Robots, pages: 997-1002, Humanoids, November 2015 (inproceedings)

am ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Probabilistic Segmentation Applied to an Assembly Task

Lioutikov, R., Neumann, G., Maeda, G., Peters, J.

In 15th IEEE-RAS International Conference on Humanoid Robots, pages: 533-540, Humanoids, November 2015 (inproceedings)

am ei

DOI [BibTex]

DOI [BibTex]


Thumb xl posterior
Automatic LQR Tuning Based on Gaussian Process Optimization: Early Experimental Results

Marco, A., Hennig, P., Bohg, J., Schaal, S., Trimpe, S.

Machine Learning in Planning and Control of Robot Motion Workshop at the IEEE/RSJ International Conference on Intelligent Robots and Systems (iROS), pages: , , Machine Learning in Planning and Control of Robot Motion Workshop, October 2015 (conference)

Abstract
This paper proposes an automatic controller tuning framework based on linear optimal control combined with Bayesian optimization. With this framework, an initial set of controller gains is automatically improved according to a pre-defined performance objective evaluated from experimental data. The underlying Bayesian optimization algorithm is Entropy Search, which represents the latent objective as a Gaussian process and constructs an explicit belief over the location of the objective minimum. This is used to maximize the information gain from each experimental evaluation. Thus, this framework shall yield improved controllers with fewer evaluations compared to alternative approaches. A seven-degree-of-freedom robot arm balancing an inverted pole is used as the experimental demonstrator. Preliminary results of a low-dimensional tuning problem highlight the method’s potential for automatic controller tuning on robotic platforms.

am ei ics pn

PDF DOI Project Page [BibTex]

PDF DOI Project Page [BibTex]


no image
Diversity of sharp wave-ripples in the CA1 of the macaque hippocampus and their brain wide signatures

Ramirez-Villegas, J. F., Logothetis, N. K., Besserve, M.

45th Annual Meeting of the Society for Neuroscience (Neuroscience 2015), October 2015 (poster)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Permutational Rademacher Complexity: a New Complexity Measure for Transductive Learning

Tolstikhin, I., Zhivotovskiy, N., Blanchard, G.

In Proceedings of the 26th International Conference on Algorithmic Learning Theory, 9355, pages: 209-223, Lecture Notes in Computer Science, (Editors: K. Chaudhuri, C. Gentile and S. Zilles), Springer, ALT, October 2015 (inproceedings)

ei

DOI [BibTex]

DOI [BibTex]


no image
Stabilizing Novel Objects by Learning to Predict Tactile Slip

Veiga, F., van Hoof, H., Peters, J., Hermans, T.

In Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems, pages: 5065-5072, IROS, September 2015 (inproceedings)

am ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Model-Free Probabilistic Movement Primitives for Physical Interaction

Paraschos, A., Rueckert, E., Peters, J., Neumann, G.

In Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems, pages: 2860-2866, IROS, September 2015 (inproceedings)

am ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Combined Pose-Wrench and State Machine Representation for Modeling Robotic Assembly Skills

Wahrburg, A., Zeiss, S., Matthias, B., Peters, J., Ding, H.

In Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems, pages: 852-857, IROS, September 2015 (inproceedings)

am ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Probabilistic Progress Prediction and Sequencing of Concurrent Movement Primitives

Manschitz, S., Kober, J., Gienger, M., Peters, J.

In Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems, pages: 449-455, IROS, September 2015 (inproceedings)

am ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Reinforcement Learning vs Human Programming in Tetherball Robot Games

Parisi, S., Abdulsamad, H., Paraschos, A., Daniel, C., Peters, J.

In Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems, pages: 6428-6434, IROS, September 2015 (inproceedings)

am ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Learning Motor Skills from Partially Observed Movements Executed at Different Speeds

Ewerton, M., Maeda, G., Peters, J., Neumann, G.

In Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems, pages: 456-463, IROS, September 2015 (inproceedings)

am ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Is Breathing Rate a Confounding Variable in Brain-Computer Interfaces (BCIs) Based on EEG Spectral Power?

Ibarra Chaoul, A., Grosse-Wentrup, M.

Proceedings of the 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pages: 1079-1082, EMBC, August 2015 (conference)

ei

DOI [BibTex]

DOI [BibTex]


no image
Retrospective motion correction of magnitude-input MR images

Loktyushin, A., Schuler, C., Scheffler, K., Schölkopf, B.

First International Workshop on Machine Learning Meets Medical Imaging (MLMMI 2015), held in conjunction with ICML 2015, 9487, pages: 3-12, Lecture Notes in Computer Science, (Editors: K. K. Bhatia and H. Lombaert), Springer, July 2015 (conference)

ei

DOI [BibTex]

DOI [BibTex]


Thumb xl screen shot 2015 08 22 at 21.47.37
Direct Loss Minimization Inverse Optimal Control

Doerr, A., Ratliff, N., Bohg, J., Toussaint, M., Schaal, S.

In Proceedings of Robotics: Science and Systems, Rome, Italy, Robotics: Science and Systems XI, July 2015 (inproceedings)

Abstract
Inverse Optimal Control (IOC) has strongly impacted the systems engineering process, enabling automated planner tuning through straightforward and intuitive demonstration. The most successful and established applications, though, have been in lower dimensional problems such as navigation planning where exact optimal planning or control is feasible. In higher dimensional systems, such as humanoid robots, research has made substantial progress toward generalizing the ideas to model free or locally optimal settings, but these systems are complicated to the point where demonstration itself can be difficult. Typically, real-world applications are restricted to at best noisy or even partial or incomplete demonstrations that prove cumbersome in existing frameworks. This work derives a very flexible method of IOC based on a form of Structured Prediction known as Direct Loss Minimization. The resulting algorithm is essentially Policy Search on a reward function that rewards similarity to demonstrated behavior (using Covariance Matrix Adaptation (CMA) in our experiments). Our framework blurs the distinction between IOC, other forms of Imitation Learning, and Reinforcement Learning, enabling us to derive simple, versatile, and practical algorithms that blend imitation and reinforcement signals into a unified framework. Our experiments analyze various aspects of its performance and demonstrate its efficacy on conveying preferences for motion shaping and combined reach and grasp quality optimization.

am ics

PDF Video Project Page [BibTex]

PDF Video Project Page [BibTex]


no image
LMI-Based Synthesis for Distributed Event-Based State Estimation

Muehlebach, M., Trimpe, S.

In Proceedings of the American Control Conference, July 2015 (inproceedings)

Abstract
This paper presents an LMI-based synthesis procedure for distributed event-based state estimation. Multiple agents observe and control a dynamic process by sporadically exchanging data over a broadcast network according to an event-based protocol. In previous work [1], the synthesis of event-based state estimators is based on a centralized design. In that case three different types of communication are required: event-based communication of measurements, periodic reset of all estimates to their joint average, and communication of inputs. The proposed synthesis problem eliminates the communication of inputs as well as the periodic resets (under favorable circumstances) by accounting explicitly for the distributed structure of the control system.

am ics

PDF DOI Project Page [BibTex]

PDF DOI Project Page [BibTex]


no image
Guaranteed H2 Performance in Distributed Event-Based State Estimation

Muehlebach, M., Trimpe, S.

In Proceeding of the First International Conference on Event-based Control, Communication, and Signal Processing, June 2015 (inproceedings)

am ics

PDF DOI Project Page [BibTex]

PDF DOI Project Page [BibTex]


no image
On the Choice of the Event Trigger in Event-based Estimation

Trimpe, S., Campi, M.

In Proceeding of the First International Conference on Event-based Control, Communication, and Signal Processing, June 2015 (inproceedings)

am ics

PDF DOI Project Page [BibTex]

PDF DOI Project Page [BibTex]


no image
Retrospective rigid motion correction of undersampled MRI data

Loktyushin, A., Babayeva, M., Gallichan, D., Krueger, G., Scheffler, K., Kober, T.

23rd Annual Meeting and Exhibition of the International Society for Magnetic Resonance in Medicine, ISMRM, June 2015 (poster)

ei

[BibTex]

[BibTex]


no image
Improving Quantitative Susceptibility and R2* Mapping by Applying Retrospective Motion Correction

Feng, X., Loktyushin, A., Deistung, A., Reichenbach, J. R.

23rd Annual Meeting and Exhibition of the International Society for Magnetic Resonance in Medicine, ISMRM, June 2015 (poster)

ei

[BibTex]

[BibTex]


Thumb xl teaser
Permutohedral Lattice CNNs

Kiefel, M., Jampani, V., Gehler, P. V.

In ICLR Workshop Track, ICLR, May 2015 (inproceedings)

Abstract
This paper presents a convolutional layer that is able to process sparse input features. As an example, for image recognition problems this allows an efficient filtering of signals that do not lie on a dense grid (like pixel position), but of more general features (such as color values). The presented algorithm makes use of the permutohedral lattice data structure. The permutohedral lattice was introduced to efficiently implement a bilateral filter, a commonly used image processing operation. Its use allows for a generalization of the convolution type found in current (spatial) convolutional network architectures.

ei ps

pdf link (url) [BibTex]

pdf link (url) [BibTex]


Thumb xl bottle noise
Leveraging Big Data for Grasp Planning

Kappler, D., Bohg, B., Schaal, S.

In Proceedings of the IEEE International Conference on Robotics and Automation, May 2015 (inproceedings)

Abstract
We propose a new large-scale database containing grasps that are applied to a large set of objects from numerous categories. These grasps are generated in simulation and are annotated with different grasp stability metrics. We use a descriptive and efficient representation of the local object shape at which each grasp is applied. Given this data, we present a two-fold analysis: (i) We use crowdsourcing to analyze the correlation of the metrics with grasp success as predicted by humans. The results show that the metric based on physics simulation is a more consistent predictor for grasp success than the standard ε-metric. The results also support the hypothesis that human labels are not required for good ground truth grasp data. Instead the physics-metric can be used to generate datasets in simulation that may then be used to bootstrap learning in the real world. (ii) We apply a deep learning method and show that it can better leverage the large-scale database for prediction of grasp success compared to logistic regression. Furthermore, the results suggest that labels based on the physics-metric are less noisy than those from the ε-metric and therefore lead to a better classification performance.

am

PDF data DOI Project Page [BibTex]

PDF data DOI Project Page [BibTex]


no image
Event-based Estimation and Control for Remote Robot Operation with Reduced Communication

Trimpe, S., Buchli, J.

In Proceedings of the IEEE International Conference on Robotics and Automation, May 2015 (inproceedings)

Abstract
An event-based communication framework for remote operation of a robot via a bandwidth-limited network is proposed. The robot sends state and environment estimation data to the operator, and the operator transmits updated control commands or policies to the robot. Event-based communication protocols are designed to ensure that data is transmitted only when required: the robot sends new estimation data only if this yields a significant information gain at the operator, and the operator transmits an updated control policy only if this comes with a significant improvement in control performance. The developed framework is modular and can be used with any standard estimation and control algorithms. Simulation results of a robotic arm highlight its potential for an efficient use of limited communication resources, for example, in disaster response scenarios such as the DARPA Robotics Challenge.

am ics

PDF DOI Project Page [BibTex]

PDF DOI Project Page [BibTex]


Thumb xl tracking
The Coordinate Particle Filter - A novel Particle Filter for High Dimensional Systems

Wüthrich, M., Bohg, J., Kappler, D., Pfreundt, C., Schaal, S.

In Proceedings of the IEEE International Conference on Robotics and Automation, May 2015 (inproceedings)

Abstract
Parametric filters, such as the Extended Kalman Filter and the Unscented Kalman Filter, typically scale well with the dimensionality of the problem, but they are known to fail if the posterior state distribution cannot be closely approximated by a density of the assumed parametric form. For nonparametric filters, such as the Particle Filter, the converse holds. Such methods are able to approximate any posterior, but the computational requirements scale exponentially with the number of dimensions of the state space. In this paper, we present the Coordinate Particle Filter which alleviates this problem. We propose to compute the particle weights recursively, dimension by dimension. This allows us to explore one dimension at a time, and resample after each dimension if necessary. Experimental results on simulated as well as real data con- firm that the proposed method has a substantial performance advantage over the Particle Filter in high-dimensional systems where not all dimensions are highly correlated. We demonstrate the benefits of the proposed method for the problem of multi-object and robotic manipulator tracking.

am

arXiv Video Bayesian Filtering Framework Bayesian Object Tracking DOI Project Page [BibTex]


no image
Understanding the Geometry of Workspace Obstacles in Motion Optimization

Ratliff, N., Toussaint, M., Schaal, S.

In Proceedings of the IEEE International Conference on Robotics and Automation, March 2015 (inproceedings)

am

PDF Video Project Page [BibTex]

PDF Video Project Page [BibTex]


no image
Adaptive information-theoretic bounded rational decision-making with parametric priors

Grau-Moya, J, Braun, DA

pages: 1-4, NIPS Workshop on Bounded Optimality and Rational Metareasoning, December 2015 (conference)

Abstract
Deviations from rational decision-making due to limited computational resources have been studied in the field of bounded rationality, originally proposed by Herbert Simon. There have been a number of different approaches to model bounded rationality ranging from optimality principles to heuristics. Here we take an information-theoretic approach to bounded rationality, where information-processing costs are measured by the relative entropy between a posterior decision strategy and a given fixed prior strategy. In the case of multiple environments, it can be shown that there is an optimal prior rendering the bounded rationality problem equivalent to the rate distortion problem for lossy compression in information theory. Accordingly, the optimal prior and posterior strategies can be computed by the well-known Blahut-Arimoto algorithm which requires the computation of partition sums over all possible outcomes and cannot be applied straightforwardly to continuous problems. Here we derive a sampling-based alternative update rule for the adaptation of prior behaviors of decision-makers and we show convergence to the optimal prior predicted by rate distortion theory. Importantly, the update rule avoids typical infeasible operations such as the computation of partition sums. We show in simulations a proof of concept for discrete action and environment domains. This approach is not only interesting as a generic computational method, but might also provide a more realistic model of human decision-making processes occurring on a fast and a slow time scale.

ei

[BibTex]

[BibTex]


no image
Increasing the sensitivity of Kepler to Earth-like exoplanets

Foreman-Mackey, D., Hogg, D., Schölkopf, B., Wang, D.

Workshop: 225th American Astronomical Society Meeting 2015 , pages: 105.01D, 2015 (poster)

ei

Web link (url) [BibTex]

Web link (url) [BibTex]


no image
Inference of Cause and Effect with Unsupervised Inverse Regression

Sgouritsa, E., Janzing, D., Hennig, P., Schölkopf, B.

In Proceedings of the 18th International Conference on Artificial Intelligence and Statistics, 38, pages: 847-855, JMLR Workshop and Conference Proceedings, (Editors: Lebanon, G. and Vishwanathan, S.V.N.), JMLR.org, AISTATS, 2015 (inproceedings)

ei pn

Web PDF [BibTex]

Web PDF [BibTex]


no image
Distinguishing Cause from Effect Based on Exogeneity

Zhang, K., Zhang, J., Schölkopf, B.

In Fifteenth Conference on Theoretical Aspects of Rationality and Knowledge, pages: 261-271, (Editors: Ramanujam, R.), TARK, 2015 (inproceedings)

ei

[BibTex]

[BibTex]


no image
Identification of Time-Dependent Causal Model: A Gaussian Process Treatment

Huang, B., Zhang, K., Schölkopf, B.

In 24th International Joint Conference on Artificial Intelligence, Machine Learning Track, pages: 3561-3568, (Editors: Yang, Q. and Wooldridge, M.), AAAI Press, Palo Alto, California USA, IJCAI15, 2015 (inproceedings)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Multi-Source Domain Adaptation: A Causal View

Zhang, K., Gong, M., Schölkopf, B.

In Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, pages: 3150-3157, AAAI Press, AAAI, 2015 (inproceedings)

ei

Web PDF link (url) [BibTex]

Web PDF link (url) [BibTex]


no image
Learning of Non-Parametric Control Policies with High-Dimensional State Features

van Hoof, H., Peters, J., Neumann, G.

In Proceedings of the 18th International Conference on Artificial Intelligence and Statistics, 38, pages: 995–1003, (Editors: Lebanon, G. and Vishwanathan, S.V.N. ), JMLR, AISTATS, 2015 (inproceedings)

am ei

link (url) [BibTex]

link (url) [BibTex]


no image
Towards a Learning Theory of Cause-Effect Inference

Lopez-Paz, D., Muandet, K., Schölkopf, B., Tolstikhin, I.

In Proceedings of the 32nd International Conference on Machine Learning, 37, pages: 1452–1461, JMLR Workshop and Conference Proceedings, (Editors: F. Bach and D. Blei), JMLR, ICML, 2015 (inproceedings)

ei

Web [BibTex]

Web [BibTex]


no image
Calibrating the pixel-level Kepler imaging data with a causal data-driven model

Wang, D., Foreman-Mackey, D., Hogg, D., Schölkopf, B.

Workshop: 225th American Astronomical Society Meeting 2015 , pages: 258.08, 2015 (poster)

ei

Web link (url) [BibTex]

Web link (url) [BibTex]


no image
BundleMAP: Anatomically Localized Features from dMRI for Detection of Disease

Khatami, M., Schmidt-Wilcke, T., Sundgren, P., Abbasloo, A., Schölkopf, B., Schultz, T.

In 6th International Workshop on Machine Learning in Medical Imaging, 9352, pages: 52-60, Lecture Notes in Computer Science, (Editors: L. Zhou, L. Wang, Q. Wang and Y. Shi), Springer, MLMI, 2015 (inproceedings)

ei

DOI [BibTex]

DOI [BibTex]


no image
Data-Driven Online Decision Making for Autonomous Manipulation

Kappler, D., Pastor, P., Kalakrishnan, M., Wuthrich, M., Schaal, S.

In Proceedings of Robotics: Science and Systems, Rome, Italy, 2015 (inproceedings)

am

Project Page [BibTex]

Project Page [BibTex]


Thumb xl screenshot from 2015 09 14 11 58 36
Predicting Human Reaching Motion in Collaborative Tasks Using Inverse Optimal Control and Iterative Re-planning

Mainprice, J., Hayne, R., Berenson, D.

In Proceedings of the IEEE International Conference on Robotics and Automation, 2015 (inproceedings)

am

Project Page [BibTex]

Project Page [BibTex]


no image
Hierarchical Label Queries with Data-Dependent Partitions

Kpotufe, S., Urner, R., Ben-David, S.

In Proceedings of the 28th Conference on Learning Theory, 40, pages: 1176-1189, (Editors: Grünwald, P. and Hazan, E. and Kale, S. ), JMLR, COLT, 2015 (inproceedings)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Semi-Autonomous 3rd-Hand Robot

Lopes, M., Peters, J., Piater, J., Toussaint, M., Baisero, A., Busch, B., Erkent, O., Kroemer, O., Lioutikov, R., Maeda, G., Mollard, Y., Munzer, T., Shukla, D.

In Workshop on Cognitive Robotics in Future Manufacturing Scenarios, European Robotics Forum, 2015 (inproceedings)

am ei

link (url) [BibTex]

link (url) [BibTex]


no image
Neural Adaptive Sequential Monte Carlo

Gu, S., Ghahramani, Z., Turner, R. E.

Advances in Neural Information Processing Systems 28, pages: 2629-2637, (Editors: Corinna Cortes, Neil D. Lawrence, Daniel D. Lee, Masashi Sugiyama, and Roman Garnett), 29th Annual Conference on Neural Information Processing Systems (NIPS), 2015 (conference)

ei

PDF Supplementary [BibTex]

PDF Supplementary [BibTex]


no image
Discovering Temporal Causal Relations from Subsampled Data

Gong, M., Zhang, K., Schölkopf, B., Tao, D., Geiger, P.

In Proceedings of the 32nd International Conference on Machine Learning, 37, pages: 1898–1906, JMLR Workshop and Conference Proceedings, (Editors: F. Bach and D. Blei), JMLR, ICML, 2015 (inproceedings)

ei

PDF link (url) [BibTex]

PDF link (url) [BibTex]


no image
Active Nearest Neighbors in Changing Environments

Berlind, C., Urner, R.

In Proceedings of the 32nd International Conference on Machine Learning, 37, pages: 1870-1879, JMLR Workshop and Conference Proceedings, (Editors: Bach, F. and Blei, D. ), JMLR, ICML, 2015 (inproceedings)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Learning Inverse Dynamics Models with Contacts

Calandra, R., Ivaldi, S., Deisenroth, M., Rückert, E., Peters, J.

In IEEE International Conference on Robotics and Automation, pages: 3186-3191, ICRA, 2015 (inproceedings)

am ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
A Probabilistic Framework for Semi-Autonomous Robots Based on Interaction Primitives with Phase Estimation

Maeda, G., Neumann, G., Ewerton, M., Lioutikov, R., Peters, J.

In Proceedings of the International Symposium of Robotics Research, ISRR, 2015 (inproceedings)

am ei

link (url) [BibTex]

link (url) [BibTex]


Thumb xl 2016 peer grading
Peer grading in a course on algorithms and data structures

Sajjadi, M. S. M., Alamgir, M., von Luxburg, U.

Workshop on Machine Learning for Education (ML4Ed) at the 32th International Conference on Machine Learning (ICML), 2015 (conference)

ei

Arxiv [BibTex]

Arxiv [BibTex]


no image
Removing systematic errors for exoplanet search via latent causes

Schölkopf, B., Hogg, D., Wang, D., Foreman-Mackey, D., Janzing, D., Simon-Gabriel, C. J., Peters, J.

In Proceedings of The 32nd International Conference on Machine Learning, 37, pages: 2218–2226, JMLR Workshop and Conference Proceedings, (Editors: Bach, F. and Blei, D.), JMLR, ICML, 2015 (inproceedings)

ei

Extended version on arXiv link (url) [BibTex]

Extended version on arXiv link (url) [BibTex]


no image
Causal Inference by Identification of Vector Autoregressive Processes with Hidden Components

Geiger, P., Zhang, K., Schölkopf, B., Gong, M., Janzing, D.

In Proceedings of the 32nd International Conference on Machine Learning, 37, pages: 1917–1925, JMLR Workshop and Conference Proceedings, (Editors: F. Bach and D. Blei), JMLR, ICML, 2015 (inproceedings)

ei

PDF link (url) [BibTex]

PDF link (url) [BibTex]