Header logo is


2020


Learning Variable Impedance Control for Contact Sensitive Tasks
Learning Variable Impedance Control for Contact Sensitive Tasks

Bogdanovic, M., Khadiv, M., Righetti, L.

IEEE Robotics and Automation Letters ( Early Access ), IEEE, July 2020 (article)

Abstract
Reinforcement learning algorithms have shown great success in solving different problems ranging from playing video games to robotics. However, they struggle to solve delicate robotic problems, especially those involving contact interactions. Though in principle a policy outputting joint torques should be able to learn these tasks, in practice we see that they have difficulty to robustly solve the problem without any structure in the action space. In this paper, we investigate how the choice of action space can give robust performance in presence of contact uncertainties. We propose to learn a policy that outputs impedance and desired position in joint space as a function of system states without imposing any other structure to the problem. We compare the performance of this approach to torque and position control policies under different contact uncertainties. Extensive simulation results on two different systems, a hopper (floating-base) with intermittent contacts and a manipulator (fixed-base) wiping a table, show that our proposed approach outperforms policies outputting torque or position in terms of both learning rate and robustness to environment uncertainty.

mg

DOI [BibTex]

2020


DOI [BibTex]


Walking Control Based on Step Timing Adaptation
Walking Control Based on Step Timing Adaptation

Khadiv, M., Herzog, A., Moosavian, S. A. A., Righetti, L.

IEEE Transactions on Robotics, 36, pages: 629 - 643, IEEE, June 2020 (article)

Abstract
Step adjustment can improve the gait robustness of biped robots; however, the adaptation of step timing is often neglected as it gives rise to nonconvex problems when optimized over several footsteps. In this article, we argue that it is not necessary to optimize walking over several steps to ensure gait viability and show that it is sufficient to merely select the next step timing and location. Using this insight, we propose a novel walking pattern generator that optimally selects step location and timing at every control cycle. Our approach is computationally simple compared to standard approaches in the literature, yet guarantees that any viable state will remain viable in the future. We propose a swing foot adaptation strategy and integrate the pattern generator with an inverse dynamics controller that does not explicitly control the center of mass nor the foot center of pressure. This is particularly useful for biped robots with limited control authority over their foot center of pressure, such as robots with point feet or passive ankles. Extensive simulations on a humanoid robot with passive ankles demonstrate the capabilities of the approach in various walking situations, including external pushes and foot slippage, and emphasize the importance of step timing adaptation to stabilize walking.

mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Phenomenal Causality and Sensory Realism

Meding, K., Bruijns, S. A., Schölkopf, B., Berens, P., Wichmann, F. A.

i-Perception, 11(3):1-16, June 2020 (article)

ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Variational Bayes In Private Settings (VIPS)

Park, M., Foulds, J., Chaudhuri, K., Welling, M.

Journal of Artificial Intelligence Research, 68, pages: 109-157, May 2020 (article)

ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Adaptation and Robust Learning of Probabilistic Movement Primitives

Gomez-Gonzalez, S., Neumann, G., Schölkopf, B., Peters, J.

IEEE Transactions on Robotics, 36(2):366-379, IEEE, March 2020 (article)

ei

arXiv DOI Project Page [BibTex]

arXiv DOI Project Page [BibTex]


no image
DeepMAsED: evaluating the quality of metagenomic assemblies

Mineeva*, O., Rojas-Carulla*, M., Ley, R. E., Schölkopf, B. Y. N. D.

Bioinformatics, 36(10):3011-3017, Febuary 2020, *equal contribution (article)

ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Real Time Trajectory Prediction Using Deep Conditional Generative Models
Real Time Trajectory Prediction Using Deep Conditional Generative Models

Gomez-Gonzalez, S., Prokudin, S., Schölkopf, B., Peters, J.

IEEE Robotics and Automation Letters, 5(2):970-976, IEEE, January 2020 (article)

ei ps

arXiv DOI [BibTex]

arXiv DOI [BibTex]


Self-supervised motion deblurring
Self-supervised motion deblurring

Liu, P., Janai, J., Pollefeys, M., Sattler, T., Geiger, A.

IEEE Robotics and Automation Letters, 2020 (article)

Abstract
Motion blurry images challenge many computer vision algorithms, e.g., feature detection, motion estimation, or object recognition. Deep convolutional neural networks are state-of-the-art for image deblurring. However, obtaining training data with corresponding sharp and blurry image pairs can be difficult. In this paper, we present a differentiable reblur model for self-supervised motion deblurring, which enables the network to learn from real-world blurry image sequences without relying on sharp images for supervision. Our key insight is that motion cues obtained from consecutive images yield sufficient information to inform the deblurring task. We therefore formulate deblurring as an inverse rendering problem, taking into account the physical image formation process: we first predict two deblurred images from which we estimate the corresponding optical flow. Using these predictions, we re-render the blurred images and minimize the difference with respect to the original blurry inputs. We use both synthetic and real dataset for experimental evaluations. Our experiments demonstrate that self-supervised single image deblurring is really feasible and leads to visually compelling results.

avg

pdf Project Page Blog [BibTex]

pdf Project Page Blog [BibTex]


no image
Analytical classical density functionals from an equation learning network

Lin, S., Martius, G., Oettel, M.

The Journal of Chemical Physics, 152(2):021102, 2020, arXiv preprint \url{https://arxiv.org/abs/1910.12752} (article)

al

Preprint_PDF DOI [BibTex]

Preprint_PDF DOI [BibTex]


no image
An Adaptive Optimizer for Measurement-Frugal Variational Algorithms

Kübler, J. M., Arrasmith, A., Cincio, L., Coles, P. J.

Quantum, 4, pages: 263, 2020 (article)

ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Learning Neural Light Transport
Learning Neural Light Transport

Sanzenbacher, P., Mescheder, L., Geiger, A.

Arxiv, 2020 (article)

Abstract
In recent years, deep generative models have gained significance due to their ability to synthesize natural-looking images with applications ranging from virtual reality to data augmentation for training computer vision models. While existing models are able to faithfully learn the image distribution of the training set, they often lack controllability as they operate in 2D pixel space and do not model the physical image formation process. In this work, we investigate the importance of 3D reasoning for photorealistic rendering. We present an approach for learning light transport in static and dynamic 3D scenes using a neural network with the goal of predicting photorealistic images. In contrast to existing approaches that operate in the 2D image domain, our approach reasons in both 3D and 2D space, thus enabling global illumination effects and manipulation of 3D scene geometry. Experimentally, we find that our model is able to produce photorealistic renderings of static and dynamic scenes. Moreover, it compares favorably to baselines which combine path tracing and image denoising at the same computational budget.

avg

arxiv [BibTex]


no image
Counterfactual Mean Embedding

Muandet, K., Kanagawa, M., Saengkyongam, S., Marukatat, S.

Journal of Machine Learning Research, 2020 (article) Accepted

ei

[BibTex]

[BibTex]


HOTA: A Higher Order Metric for Evaluating Multi-Object Tracking
HOTA: A Higher Order Metric for Evaluating Multi-Object Tracking

Luiten, J., Osep, A., Dendorfer, P., Torr, P., Geiger, A., Leal-Taixe, L., Leibe, B.

International Journal of Computer Vision (IJCV), 2020 (article)

Abstract
Multi-Object Tracking (MOT) has been notoriously difficult to evaluate. Previous metrics overemphasize the importance of either detection or association. To address this, we present a novel MOT evaluation metric, HOTA (Higher Order Tracking Accuracy), which explicitly balances the effect of performing accurate detection, association and localization into a single unified metric for comparing trackers. HOTA decomposes into a family of sub-metrics which are able to evaluate each of five basic error types separately, which enables clear analysis of tracking performance. We evaluate the effectiveness of HOTA on the MOTChallenge benchmark, and show that it is able to capture important aspects of MOT performance not previously taken into account by established metrics. Furthermore, we show HOTA scores better align with human visual evaluation of tracking performance.

avg

pdf [BibTex]

pdf [BibTex]


no image
Causal Discovery from Heterogeneous/Nonstationary Data

Huang, B., Zhang, K., J., Z., Ramsey, J., Sanchez-Romero, R., Glymour, C., Schölkopf, B.

Journal of Machine Learning Research, 21(89):1-53, 2020 (article)

ei

link (url) [BibTex]

link (url) [BibTex]

2019


no image
Color Constancy in Deep Neural Networks

Flachot, A., Schuett, H., Fleming, R. W., Wichmann, F. A., Gegenfurtner, K. R.

Journal of Vision, 19(10)(298), September 2019 (article)

Abstract
Journal of Vision 2019;19(10):298. doi: https://doi.org/10.1167/19.10.298.

ei

DOI [BibTex]

2019


DOI [BibTex]


no image
Convolutional neural networks: A magic bullet for gravitational-wave detection?

Gebhard, T., Kilbertus, N., Harry, I., Schölkopf, B.

Physical Review D, 100(6):063015, American Physical Society, September 2019 (article)

ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Data scarcity, robustness and extreme multi-label classification

Babbar, R., Schölkopf, B.

Machine Learning, 108(8):1329-1351, September 2019, Special Issue of the ECML PKDD 2019 Journal Track (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
SPINDLE: End-to-end learning from EEG/EMG to extrapolate animal sleep scoring across experimental settings, labs and species

Miladinovic, D., Muheim, C., Bauer, S., Spinnler, A., Noain, D., Bandarabadi, M., Gallusser, B., Krummenacher, G., Baumann, C., Adamantidis, A., Brown, S. A., Buhmann, J. M.

PLOS Computational Biology, 15(4):1-30, Public Library of Science, April 2019 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Optimal Stair Climbing Pattern Generation for Humanoids Using Virtual Slope and Distributed Mass Model

Ahmadreza, S., Aghil, Y., Majid, K., Saeed, M., Saeid, M. S.

Journal of Intelligent and Robotics Systems, 94:1, pages: 43-59, April 2019 (article)

mg

DOI [BibTex]

DOI [BibTex]


no image
A 32-channel multi-coil setup optimized for human brain shimming at 9.4T

Aghaeifar, A., Zhou, J., Heule, R., Tabibian, B., Schölkopf, B., Jia, F., Zaitsev, M., Scheffler, K.

Magnetic Resonance in Medicine, 2019, (Early View) (article)

ei

DOI [BibTex]

DOI [BibTex]


Multidimensional Contrast Limited Adaptive Histogram Equalization
Multidimensional Contrast Limited Adaptive Histogram Equalization

Stimper, V., Bauer, S., Ernstorfer, R., Schölkopf, B., Xian, R. P.

IEEE Access, 7, pages: 165437-165447, 2019 (article)

ei

arXiv link (url) DOI [BibTex]

arXiv link (url) DOI [BibTex]


no image
TD-regularized actor-critic methods

Parisi, S., Tangkaratt, V., Peters, J., Khan, M. E.

Machine Learning, 108(8):1467-1501, (Editors: Karsten Borgwardt, Po-Ling Loh, Evimaria Terzi, and Antti Ukkonen), 2019 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
A Robustness Analysis of Inverse Optimal Control of Bipedal Walking

Rebula, J. R., Schaal, S., Finley, J., Righetti, L.

IEEE Robotics and Automation Letters, 4(4):4531-4538, 2019 (article)

mg

DOI [BibTex]

DOI [BibTex]


no image
On the positivity and magnitudes of Bayesian quadrature weights

Karvonen, T., Kanagawa, M., Särkä, S.

Statistics and Computing, 29, pages: 1317-1333, 2019 (article)

pn

DOI [BibTex]

DOI [BibTex]


no image
Probabilistic solutions to ordinary differential equations as nonlinear Bayesian filtering: a new perspective

Tronarp, F., Kersting, H., Särkkä, S. H. P.

Statistics and Computing, 29(6):1297-1315, 2019 (article)

ei pn

DOI [BibTex]

DOI [BibTex]


Learning to Control Highly Accelerated Ballistic Movements on Muscular Robots
Learning to Control Highly Accelerated Ballistic Movements on Muscular Robots

Büchler, D., Calandra, R., Peters, J.

2019 (article) Submitted

Abstract
High-speed and high-acceleration movements are inherently hard to control. Applying learning to the control of such motions on anthropomorphic robot arms can improve the accuracy of the control but might damage the system. The inherent exploration of learning approaches can lead to instabilities and the robot reaching joint limits at high speeds. Having hardware that enables safe exploration of high-speed and high-acceleration movements is therefore desirable. To address this issue, we propose to use robots actuated by Pneumatic Artificial Muscles (PAMs). In this paper, we present a four degrees of freedom (DoFs) robot arm that reaches high joint angle accelerations of up to 28000 °/s^2 while avoiding dangerous joint limits thanks to the antagonistic actuation and limits on the air pressure ranges. With this robot arm, we are able to tune control parameters using Bayesian optimization directly on the hardware without additional safety considerations. The achieved tracking performance on a fast trajectory exceeds previous results on comparable PAM-driven robots. We also show that our system can be controlled well on slow trajectories with PID controllers due to careful construction considerations such as minimal bending of cables, lightweight kinematics and minimal contact between PAMs and PAMs with the links. Finally, we propose a novel technique to control the the co-contraction of antagonistic muscle pairs. Experimental results illustrate that choosing the optimal co-contraction level is vital to reach better tracking performance. Through the use of PAM-driven robots and learning, we do a small step towards the future development of robots capable of more human-like motions.

ei

Arxiv Video [BibTex]


Autonomous Identification and Goal-Directed Invocation of Event-Predictive Behavioral Primitives
Autonomous Identification and Goal-Directed Invocation of Event-Predictive Behavioral Primitives

Gumbsch, C., Butz, M. V., Martius, G.

IEEE Transactions on Cognitive and Developmental Systems, 2019 (article)

Abstract
Voluntary behavior of humans appears to be composed of small, elementary building blocks or behavioral primitives. While this modular organization seems crucial for the learning of complex motor skills and the flexible adaption of behavior to new circumstances, the problem of learning meaningful, compositional abstractions from sensorimotor experiences remains an open challenge. Here, we introduce a computational learning architecture, termed surprise-based behavioral modularization into event-predictive structures (SUBMODES), that explores behavior and identifies the underlying behavioral units completely from scratch. The SUBMODES architecture bootstraps sensorimotor exploration using a self-organizing neural controller. While exploring the behavioral capabilities of its own body, the system learns modular structures that predict the sensorimotor dynamics and generate the associated behavior. In line with recent theories of event perception, the system uses unexpected prediction error signals, i.e., surprise, to detect transitions between successive behavioral primitives. We show that, when applied to two robotic systems with completely different body kinematics, the system manages to learn a variety of complex behavioral primitives. Moreover, after initial self-exploration the system can use its learned predictive models progressively more effectively for invoking model predictive planning and goal-directed control in different tasks and environments.

al

arXiv PDF video link (url) DOI Project Page [BibTex]


no image
Robustifying Independent Component Analysis by Adjusting for Group-Wise Stationary Noise

Pfister*, N., Weichwald*, S., Bühlmann, P., Schölkopf, B.

Journal of Machine Learning Research, 20(147):1-50, 2019, *equal contribution (article)

ei

ArXiv Code Project page PDF link (url) Project Page Project Page [BibTex]

ArXiv Code Project page PDF link (url) Project Page Project Page [BibTex]


no image
Enhancing Human Learning via Spaced Repetition Optimization

Tabibian, B., Upadhyay, U., De, A., Zarezade, A., Schölkopf, B., Gomez Rodriguez, M.

Proceedings of the National Academy of Sciences, 116(10):3988-3993, National Academy of Sciences, 2019 (article)

ei

link (url) DOI Project Page Project Page [BibTex]

link (url) DOI Project Page Project Page [BibTex]


no image
Entropic Regularization of Markov Decision Processes

Belousov, B., Peters, J.

Entropy, 21(7):674, 2019 (article)

ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Searchers adjust their eye-movement dynamics to target characteristics in natural scenes

Rothkegel, L., Schütt, H., Trukenbrod, H., Wichmann, F. A., Engbert, R.

Scientific Reports, 9(1635), 2019 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Spatial statistics for gaze patterns in scene viewing: Effects of repeated viewing

Trukenbrod, H. A., Barthelmé, S., Wichmann, F. A., Engbert, R.

Journal of Vision, 19(6):19, 2019 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Rigid vs compliant contact: an experimental study on biped walking

Khadiv, M., Moosavian, S. A. A., Yousefi-Koma, A., Sadedel, M., Ehsani-Seresht, A., Mansouri, S.

Multibody System Dynamics, 45(4):379-401, 2019 (article)

mg

DOI [BibTex]

DOI [BibTex]


no image
Even Delta-Matroids and the Complexity of Planar Boolean CSPs

Kazda, A., Kolmogorov, V., Rolinek, M.

ACM Transactions on Algorithms, 15(2, Special Issue on Soda'17 and Regular Papers):Article Number 22, 2019 (article)

al

DOI [BibTex]

DOI [BibTex]


no image
Machine Learning for Haptics: Inferring Multi-Contact Stimulation From Sparse Sensor Configuration

Sun, H., Martius, G.

Frontiers in Neurorobotics, 13, pages: 51, 2019 (article)

Abstract
Robust haptic sensation systems are essential for obtaining dexterous robots. Currently, we have solutions for small surface areas such as fingers, but affordable and robust techniques for covering large areas of an arbitrary 3D surface are still missing. Here, we introduce a general machine learning framework to infer multi-contact haptic forces on a 3D robot’s limb surface from internal deformation measured by only a few physical sensors. The general idea of this framework is to predict first the whole surface deformation pattern from the sparsely placed sensors and then to infer number, locations and force magnitudes of unknown contact points. We show how this can be done even if training data can only be obtained for single-contact points using transfer learning at the example of a modified limb of the Poppy robot. With only 10 strain-gauge sensors we obtain a high accuracy also for multiple-contact points. The method can be applied to arbitrarily shaped surfaces and physical sensor types, as long as training data can be obtained.

al

link (url) DOI [BibTex]


no image
Quantum mean embedding of probability distributions

Kübler, J. M., Muandet, K., Schölkopf, B.

Physical Review Research, 1(3):033159, American Physical Society, 2019 (article)

ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Inferring causation from time series with perspectives in Earth system sciences

Runge, J., Bathiany, S., Bollt, E., Camps-Valls, G., Coumou, D., Deyle, E., Glymour, C., Kretschmer, M., Mahecha, M., Munoz-Mari, J., van Nes, E., Peters, J., Quax, R., Reichstein, M., Scheffer, M., Schölkopf, B., Spirtes, P., Sugihara, G., Sun, J., Zhang, K., Zscheischler, J.

Nature Communications, 10(2553), 2019 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Analysis of cause-effect inference by comparing regression errors

Blöbaum, P., Janzing, D., Washio, T., Shimizu, S., Schölkopf, B.

PeerJ Computer Science, 5, pages: e169, 2019 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Learning Intention Aware Online Adaptation of Movement Primitives

Koert, D., Pajarinen, J., Schotschneider, A., Trick, S., Rothkopf, C., Peters, J.

IEEE Robotics and Automation Letters, 4(4):3719-3726, 2019 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Spread-spectrum magnetic resonance imaging

Scheffler, K., Loktyushin, A., Bause, J., Aghaeifar, A., Steffen, T., Schölkopf, B.

Magnetic Resonance in Medicine, 82(3):877-885, 2019 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
How Cognitive Models of Human Body Experience Might Push Robotics

Schürmann, T., Mohler, B. J., Peters, J., Beckerle, P.

Frontiers in Neurorobotics, 13(14), 2019 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Dense connectomic reconstruction in layer 4 of the somatosensory cortex

Motta, A., Berning, M., Boergens, K. M., Staffler, B., Beining, M., Loomba, S., Hennig, P., Wissler, H., Helmstaedter, M.

Science, 366(6469):eaay3134, American Association for the Advancement of Science, 2019 (article)

ei pn

DOI [BibTex]

DOI [BibTex]


no image
Learning Trajectory Distributions for Assisted Teleoperation and Path Planning

Ewerton, M., Arenz, O., Maeda, G., Koert, D., Kolev, Z., Takahashi, M., Peters, J.

Frontiers in Robotics and AI, 6, pages: 89, 2019 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Birch tar production does not prove Neanderthal behavioral complexity

Schmidt, P., Blessing, M., Rageot, M., Iovita, R., Pfleging, J., Nickel, K. G., Righetti, L., Tennie, C.

Proceedings of the National Academy of Sciences (PNAS), 116(36):17707-17711, 2019 (article)

mg

DOI [BibTex]

DOI [BibTex]


no image
Brainglance: Visualizing Group Level MRI Data at One Glance

Stelzer, J., Lacosse, E., Bause, J., Scheffler, K., Lohmann, G.

Frontiers in Neuroscience, 13(972), 2019 (article)

ei

DOI [BibTex]

DOI [BibTex]