Header logo is


2019


no image
Dynamics of beneficial epidemics

Berdahl, A., Brelsford, C., De Bacco, C., Dumas, M., Ferdinand, V., Grochow, J. A., nt Hébert-Dufresne, L., Kallus, Y., Kempes, C. P., Kolchinsky, A., Larremore, D. B., Libby, E., Power, E. A., A., S. C., Tracey, B. D.

Scientific Reports, 9, pages: 15093, October 2019 (article)

pio

DOI [BibTex]

2019


DOI [BibTex]


no image
Optimal Stair Climbing Pattern Generation for Humanoids Using Virtual Slope and Distributed Mass Model

Ahmadreza, S., Aghil, Y., Majid, K., Saeed, M., Saeid, M. S.

Journal of Intelligent and Robotics Systems, 94:1, pages: 43-59, April 2019 (article)

mg

DOI [BibTex]

DOI [BibTex]


no image
A Robustness Analysis of Inverse Optimal Control of Bipedal Walking

Rebula, J. R., Schaal, S., Finley, J., Righetti, L.

IEEE Robotics and Automation Letters, 4(4):4531-4538, 2019 (article)

mg

DOI [BibTex]

DOI [BibTex]


Autonomous Identification and Goal-Directed Invocation of Event-Predictive Behavioral Primitives
Autonomous Identification and Goal-Directed Invocation of Event-Predictive Behavioral Primitives

Gumbsch, C., Butz, M. V., Martius, G.

IEEE Transactions on Cognitive and Developmental Systems, 2019 (article)

Abstract
Voluntary behavior of humans appears to be composed of small, elementary building blocks or behavioral primitives. While this modular organization seems crucial for the learning of complex motor skills and the flexible adaption of behavior to new circumstances, the problem of learning meaningful, compositional abstractions from sensorimotor experiences remains an open challenge. Here, we introduce a computational learning architecture, termed surprise-based behavioral modularization into event-predictive structures (SUBMODES), that explores behavior and identifies the underlying behavioral units completely from scratch. The SUBMODES architecture bootstraps sensorimotor exploration using a self-organizing neural controller. While exploring the behavioral capabilities of its own body, the system learns modular structures that predict the sensorimotor dynamics and generate the associated behavior. In line with recent theories of event perception, the system uses unexpected prediction error signals, i.e., surprise, to detect transitions between successive behavioral primitives. We show that, when applied to two robotic systems with completely different body kinematics, the system manages to learn a variety of complex behavioral primitives. Moreover, after initial self-exploration the system can use its learned predictive models progressively more effectively for invoking model predictive planning and goal-directed control in different tasks and environments.

al

arXiv PDF video link (url) DOI Project Page [BibTex]


no image
Rigid vs compliant contact: an experimental study on biped walking

Khadiv, M., Moosavian, S. A. A., Yousefi-Koma, A., Sadedel, M., Ehsani-Seresht, A., Mansouri, S.

Multibody System Dynamics, 45(4):379-401, 2019 (article)

mg

DOI [BibTex]

DOI [BibTex]


no image
Even Delta-Matroids and the Complexity of Planar Boolean CSPs

Kazda, A., Kolmogorov, V., Rolinek, M.

ACM Transactions on Algorithms, 15(2, Special Issue on Soda'17 and Regular Papers):Article Number 22, 2019 (article)

al

DOI [BibTex]

DOI [BibTex]


no image
Machine Learning for Haptics: Inferring Multi-Contact Stimulation From Sparse Sensor Configuration

Sun, H., Martius, G.

Frontiers in Neurorobotics, 13, pages: 51, 2019 (article)

Abstract
Robust haptic sensation systems are essential for obtaining dexterous robots. Currently, we have solutions for small surface areas such as fingers, but affordable and robust techniques for covering large areas of an arbitrary 3D surface are still missing. Here, we introduce a general machine learning framework to infer multi-contact haptic forces on a 3D robot’s limb surface from internal deformation measured by only a few physical sensors. The general idea of this framework is to predict first the whole surface deformation pattern from the sparsely placed sensors and then to infer number, locations and force magnitudes of unknown contact points. We show how this can be done even if training data can only be obtained for single-contact points using transfer learning at the example of a modified limb of the Poppy robot. With only 10 strain-gauge sensors we obtain a high accuracy also for multiple-contact points. The method can be applied to arbitrarily shaped surfaces and physical sensor types, as long as training data can be obtained.

al

link (url) DOI [BibTex]


no image
Birch tar production does not prove Neanderthal behavioral complexity

Schmidt, P., Blessing, M., Rageot, M., Iovita, R., Pfleging, J., Nickel, K. G., Righetti, L., Tennie, C.

Proceedings of the National Academy of Sciences (PNAS), 116(36):17707-17711, 2019 (article)

mg

DOI [BibTex]

DOI [BibTex]

2015


no image
The average number of distinct sites visited by a random walker on random graphs

De Bacco, C., Majumdar, S. N., Sollich, P.

Journal of Physics A: Mathematical and Theoretical, 48(20):205004, IOP Publishing, 2015 (article)

pio

Preprint link (url) [BibTex]

2015


Preprint link (url) [BibTex]


no image
The edge-disjoint path problem on random graphs by message-passing

Altarelli, F., Braunstein, A., Dall’Asta, L., De Bacco, C., Franz, S.

PloS one, 10(12):e0145222, Public Library of Science, 2015 (article)

pio

Code Preprint link (url) Project Page [BibTex]

Code Preprint link (url) Project Page [BibTex]


no image
Kinematic and gait similarities between crawling human infants and other quadruped mammals

Righetti, L., Nylen, A., Rosander, K., Ijspeert, A.

Frontiers in Neurology, 6(17), February 2015 (article)

Abstract
Crawling on hands and knees is an early pattern of human infant locomotion, which offers an interesting way of studying quadrupedalism in one of its simplest form. We investigate how crawling human infants compare to other quadruped mammals, especially primates. We present quantitative data on both the gait and kinematics of seven 10-month-old crawling infants. Body movements were measured with an optoelectronic system giving precise data on 3-dimensional limb movements. Crawling on hands and knees is very similar to the locomotion of non-human primates in terms of the quite protracted arm at touch-down, the coordination between the spine movements in the lateral plane and the limbs, the relatively extended limbs during locomotion and the strong correlation between stance duration and speed of locomotion. However, there are important differences compared to primates, such as the choice of a lateral-sequence walking gait, which is similar to most non-primate mammals and the relatively stiff elbows during stance as opposed to the quite compliant gaits of primates. These finding raise the question of the role of both the mechanical structure of the body and neural control on the determination of these characteristics.

mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Non-equilibrium statistical mechanics of the heat bath for two Brownian particles : Internal degrees of freedom found where there shouldn’t be (Special Issue on New Challenges in Complex Systems Science)

De Bacco, C., Baldovin, F., Orlandini, E.

理工研報告特集号 : ASTE : advances in science, technology and environmentology : special issue, 11, pages: 111-113, 早稲田大学理工学術院総合研究所 (理工学研究所), March 2015 (article)

pio

link (url) [BibTex]

link (url) [BibTex]


no image
Novel plasticity rule can explain the development of sensorimotor intelligence

Der, R., Martius, G.

Proceedings of the National Academy of Sciences, 112(45):E6224-E6232, 2015 (article)

Abstract
Grounding autonomous behavior in the nervous system is a fundamental challenge for neuroscience. In particular, self-organized behavioral development provides more questions than answers. Are there special functional units for curiosity, motivation, and creativity? This paper argues that these features can be grounded in synaptic plasticity itself, without requiring any higher-level constructs. We propose differential extrinsic plasticity (DEP) as a new synaptic rule for self-learning systems and apply it to a number of complex robotic systems as a test case. Without specifying any purpose or goal, seemingly purposeful and adaptive rhythmic behavior is developed, displaying a certain level of sensorimotor intelligence. These surprising results require no system-specific modifications of the DEP rule. They rather arise from the underlying mechanism of spontaneous symmetry breaking, which is due to the tight brain body environment coupling. The new synaptic rule is biologically plausible and would be an interesting target for neurobiological investigation. We also argue that this neuronal mechanism may have been a catalyst in natural evolution.

al

link (url) DOI Project Page [BibTex]

link (url) DOI Project Page [BibTex]


no image
Quantifying Emergent Behavior of Autonomous Robots

Martius, G., Olbrich, E.

Entropy, 17(10):7266, 2015 (article)

al

link (url) DOI [BibTex]

link (url) DOI [BibTex]

2008


no image
Frequency analysis with coupled nonlinear oscillators

Buchli, J., Righetti, L., Ijspeert, A.

Physica D: Nonlinear Phenomena, 237(13):1705-1718, August 2008 (article)

Abstract
We present a method to obtain the frequency spectrum of a signal with a nonlinear dynamical system. The dynamical system is composed of a pool of adaptive frequency oscillators with negative mean-field coupling. For the frequency analysis, the synchronization and adaptation properties of the component oscillators are exploited. The frequency spectrum of the signal is reflected in the statistics of the intrinsic frequencies of the oscillators. The frequency analysis is completely embedded in the dynamics of the system. Thus, no pre-processing or additional parameters, such as time windows, are needed. Representative results of the numerical integration of the system are presented. It is shown, that the oscillators tune to the correct frequencies for both discrete and continuous spectra. Due to its dynamic nature the system is also capable to track non-stationary spectra. Further, we show that the system can be modeled in a probabilistic manner by means of a nonlinear Fokker–Planck equation. The probabilistic treatment is in good agreement with the numerical results, and provides a useful tool to understand the underlying mechanisms leading to convergence.

mg

link (url) DOI [BibTex]

2008


link (url) DOI [BibTex]

2007


no image
iCub - The Design and Realization of an Open Humanoid Platform for Cognitive and Neuroscience Research

Tsagarakis, N., Metta, G., Sandini, G., Vernon, D., Beira, R., Becchi, F., Righetti, L., Santos-Victor, J., Ijspeert, A., Carrozza, M., Caldwell, D.

Advanced Robotics, 21(10):1151-1175, 2007 (article)

Abstract
The development of robotic cognition and the advancement of understanding of human cognition form two of the current greatest challenges in robotics and neuroscience, respectively. The RobotCub project aims to develop an embodied robotic child (iCub) with the physical (height 90 cm and mass less than 23 kg) and ultimately cognitive abilities of a 2.5-year-old human child. The iCub will be a freely available open system which can be used by scientists in all cognate disciplines from developmental psychology to epigenetic robotics to enhance understanding of cognitive systems through the study of cognitive development. The iCub will be open both in software, but more importantly in all aspects of the hardware and mechanical design. In this paper the design of the mechanisms and structures forming the basic 'body' of the iCub are described. The papers considers kinematic structures dynamic design criteria, actuator specification and selection, and detailed mechanical and electronic design. The paper concludes with tests of the performance of sample joints, and comparison of these results with the design requirements and simulation projects.

mg

link (url) DOI [BibTex]

2007


link (url) DOI [BibTex]