Header logo is


2016


no image
One for all?! Simultaneous examination of load-inducing factors for advancing media-related instructional research

Wirzberger, M., Beege, M., Schneider, S., Nebel, S., Rey, G. D.

Computers {\&} Education, 100, pages: 18-31, Elsevier BV, 2016 (article)

Abstract
In multimedia learning settings, limitations in learners' mental resource capacities need to be considered to avoid impairing effects on learning performance. Based on the prominent and often quoted Cognitive Load Theory, this study investigates the potential of a single experimental approach to provide simultaneous and separate measures for the postulated load-inducing factors. Applying a basal letter-learning task related to the process of working memory updating, intrinsic cognitive load (by varying task complexity), extraneous cognitive load (via inducing split-attention demands) and germane cognitive load (by varying the presence of schemata) were manipulated within a 3 × 2 × 2-factorial full repeated-measures design. The performance of a student sample (N = 96) was inspected regarding reaction times and errors in updating and recall steps. Approaching the results with linear mixed models, the effect of complexity gained substantial strength, whereas the other factors received at least partial significant support. Additionally, interactions between two or all load-inducing factors occurred. Despite various open questions, the study comprises a promising step for the empirical investigation of existing construction yards in cognitive load research.

re

DOI [BibTex]

2016


DOI [BibTex]

2012


no image
Variants of guided self-organization for robot control

Martius, G., Herrmann, J.

Theory in Biosci., 131(3):129-137, Springer Berlin / Heidelberg, 2012 (article)

al

link (url) DOI [BibTex]

2012


link (url) DOI [BibTex]


no image
The Playful Machine - Theoretical Foundation and Practical Realization of Self-Organizing Robots

Der, R., Martius, G.

Springer, Berlin Heidelberg, 2012 (book)

Abstract
Autonomous robots may become our closest companions in the near future. While the technology for physically building such machines is already available today, a problem lies in the generation of the behavior for such complex machines. Nature proposes a solution: young children and higher animals learn to master their complex brain-body systems by playing. Can this be an option for robots? How can a machine be playful? The book provides answers by developing a general principle---homeokinesis, the dynamical symbiosis between brain, body, and environment---that is shown to drive robots to self-determined, individual development in a playful and obviously embodiment-related way: a dog-like robot starts playing with a barrier, eventually jumping or climbing over it; a snakebot develops coiling and jumping modes; humanoids develop climbing behaviors when fallen into a pit, or engage in wrestling-like scenarios when encountering an opponent. The book also develops guided self-organization, a new method that helps to make the playful machines fit for fulfilling tasks in the real world.

al

link (url) [BibTex]


no image
Burn-in, bias, and the rationality of anchoring

Lieder, F., Griffiths, T. L., Goodman, N. D.

Advances in Neural Information Processing Systems 25, pages: 2699-2707, 2012 (article)

re

[BibTex]

[BibTex]

2006


no image
Die Effektivität von schriftlichen und graphischen Warnhinweisen auf Zigarettenschachteln

Petersen, L., Lieder, F.

Zeitschrift f{\"u}r Sozialpsychologie, 37(4):245-258, Verlag Hans Huber, 2006 (article)

re

[BibTex]

2006


[BibTex]


no image
Rocking Stamper and Jumping Snake from a Dynamical System Approach to Artificial Life

Der, R., Hesse, F., Martius, G.

Adaptive Behavior, 14(2):105-115, 2006 (article)

Abstract
Dynamical systems offer intriguing possibilities as a substrate for the generation of behavior because of their rich behavioral complexity. However this complexity together with the largely covert relation between the parameters and the behavior of the agent is also the main hindrance in the goal-oriented design of a behavior system. This paper presents a general approach to the self-regulation of dynamical systems so that the design problem is circumvented. We consider the controller (a neural net work) as the mediator for changes in the sensor values over time and define a dynamics for the parameters of the controller by maximizing the dynamical complexity of the sensorimotor loop under the condition that the consequences of the actions taken are still predictable. This very general principle is given a concrete mathematical formulation and is implemented in an extremely robust and versatile algorithm for the parameter dynamics of the controller. We consider two different applications, a mechanical device called the rocking stamper and the ODE simulations of a "snake" with five degrees of freedom. In these and many other examples studied we observed various behavior modes of high dynamical complexity.

al

DOI [BibTex]

DOI [BibTex]