Header logo is


2016


A New Perspective and Extension of the Gaussian Filter
A New Perspective and Extension of the Gaussian Filter

Wüthrich, M., Trimpe, S., Garcia Cifuentes, C., Kappler, D., Schaal, S.

The International Journal of Robotics Research, 35(14):1731-1749, December 2016 (article)

Abstract
The Gaussian Filter (GF) is one of the most widely used filtering algorithms; instances are the Extended Kalman Filter, the Unscented Kalman Filter and the Divided Difference Filter. The GF represents the belief of the current state by a Gaussian distribution, whose mean is an affine function of the measurement. We show that this representation can be too restrictive to accurately capture the dependences in systems with nonlinear observation models, and we investigate how the GF can be generalized to alleviate this problem. To this end, we view the GF as the solution to a constrained optimization problem. From this new perspective, the GF is seen as a special case of a much broader class of filters, obtained by relaxing the constraint on the form of the approximate posterior. On this basis, we outline some conditions which potential generalizations have to satisfy in order to maintain the computational efficiency of the GF. We propose one concrete generalization which corresponds to the standard GF using a pseudo measurement instead of the actual measurement. Extending an existing GF implementation in this manner is trivial. Nevertheless, we show that this small change can have a major impact on the estimation accuracy.

am ics

PDF DOI Project Page [BibTex]

2016


PDF DOI Project Page [BibTex]


no image
An electro-active polymer based lens module for dynamically varying focal system

Yun, S., Park, S., Nam, S., Park, B., Park, S. K., Mun, S., Lim, J. M., Kyung, K.

Applied Physics Letters, 109(14):141908, October 2016 (article)

Abstract
We demonstrate a polymer-based active-lens module allowing a dynamic focus controllable optical system with a wide tunable range. The active-lens module is composed of parallelized two active- lenses with a convex and a concave shaped hemispherical lens structure, respectively. Under opera- tion with dynamic input voltage signals, each active-lens produces translational movement bi-directionally responding to a hybrid driving force that is a combination of an electro-active response of a thin dielectric elastomer membrane and an electro-static attraction force. Since the proposed active lens module widely modulates a gap-distance between lens-elements, an optical system based on the active-lens module provides widely-variable focusing for selective imaging of objects in arbitrary position.

hi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Wrinkle structures formed by formulating UV-crosslinkable liquid prepolymers

Park, S. K., Kwark, Y., Nam, S., Park, S., Park, B., Yun, S., Moon, J., Lee, J., Yu, B., Kyung, K.

Polymer, 99, pages: 447-452, September 2016 (article)

Abstract
Artificial wrinkles have recently been in the spotlight due to their potential use in high-tech applications. A spontaneously wrinkled film can be fabricated from UV-crosslinkable liquid prepolymers. Here, we controlled the wrinkle formation by simply formulating two UV-crosslinkable liquid prepolymers, tetraethylene glycol bis(4-ethenyl-2,3,5,6-tetrafluorophenyl) ether (TEGDSt) and tetraethylene glycol diacrylate (TEGDA). The wrinkles were formed from the TEGDSt/TEGDA formulated prepolymer layers containing up to 30 wt% of TEGDA. The wrinkle formation depended upon the rate of photo-crosslinking reaction of the formulated prepolymers. The first order apparent rate constant, kapp, was between ca. 5.7 × 10−3 and 12.2 × 10−3 s−1 for the wrinkle formation. The wrinkle structures were modulated within the kapp mainly due to variation in the extent of shrinkage of the formulated prepolymer layers with the content of TEGDA

hi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Distinct adaptation to abrupt and gradual torque perturbations with a multi-joint exoskeleton robot

Oh, Y., Sutanto, G., Mistry, M., Schweighofer, N., Schaal, S.

Abstracts of Neural Control of Movement Conference (NCM 2016), Montego Bay, Jamaica, April 2016 (poster)

am

[BibTex]

[BibTex]


no image
Objective assessment of robotic surgical skill using instrument contact vibrations

Gomez, E. D., Aggarwal, R., McMahan, W., Bark, K., Kuchenbecker, K. J.

Surgical Endoscopy, 30(4):1419-1431, 2016 (article)

hi

[BibTex]

[BibTex]


no image
Cutaneous Feedback of Fingertip Deformation and Vibration for Palpation in Robotic Surgery

Pacchierotti, C., Prattichizzo, D., Kuchenbecker, K. J.

IEEE Transactions on Biomedical Engineering, 63(2):278-287, February 2016 (article)

hi

[BibTex]

[BibTex]


no image
Structure modulated electrostatic deformable mirror for focus and geometry control

Nam, S., Park, S., Yun, S., Park, B., Park, S. K., Kyung, K.

Optics Express, 24(1):55-66, OSA, January 2016 (article)

Abstract
We suggest a way to electrostatically control deformed geometry of an electrostatic deformable mirror (EDM) based on geometric modulation of a basement. The EDM is composed of a metal coated elastomeric membrane (active mirror) and a polymeric basement with electrode (ground). When an electrical voltage is applied across the components, the active mirror deforms toward the stationary basement responding to electrostatic attraction force in an air gap. Since the differentiated gap distance can induce change in electrostatic force distribution between the active mirror and the basement, the EDMs are capable of controlling deformed geometry of the active mirror with different basement structures (concave, flat, and protrusive). The modulation of the deformed geometry leads to significant change in the range of the focal length of the EDMs. Even under dynamic operations, the EDM shows fairly consistent and large deformation enough to change focal length in a wide frequency range (1~175 Hz). The geometric modulation of the active mirror with dynamic focus tunability can allow the EDM to be an active mirror lens for optical zoom devices as well as an optical component controlling field of view.

hi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Probabilistic Inference for Determining Options in Reinforcement Learning

Daniel, C., van Hoof, H., Peters, J., Neumann, G.

Machine Learning, Special Issue, 104(2):337-357, (Editors: Gärtner, T., Nanni, M., Passerini, A. and Robardet, C.), European Conference on Machine Learning im Machine Learning, Journal Track, 2016, Best Student Paper Award of ECML-PKDD 2016 (article)

am ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Peripheral vs. central determinants of vibrotactile adaptation

Klöcker, A., Gueorguiev, D., Thonnard, J. L., Mouraux, A.

Journal of Neurophysiology, 115(2):685-691, 2016, PMID: 26581868 (article)

Abstract
Long-lasting mechanical vibrations applied to the skin induce a reversible decrease in the perception of vibration at the stimulated skin site. This phenomenon of vibrotactile adaptation has been studied extensively, yet there is still no clear consensus on the mechanisms leading to vibrotactile adaptation. In particular, the respective contributions of 1) changes affecting mechanical skin impedance, 2) peripheral processes, and 3) central processes are largely unknown. Here we used direct electrical stimulation of nerve fibers to bypass mechanical transduction processes and thereby explore the possible contribution of central vs. peripheral processes to vibrotactile adaptation. Three experiments were conducted. In the first, adaptation was induced with mechanical vibration of the fingertip (51- or 251-Hz vibration delivered for 8 min, at 40× detection threshold). In the second, we attempted to induce adaptation with transcutaneous electrical stimulation of the median nerve (51- or 251-Hz constant-current pulses delivered for 8 min, at 1.5× detection threshold). Vibrotactile detection thresholds were measured before and after adaptation. Mechanical stimulation induced a clear increase of vibrotactile detection thresholds. In contrast, thresholds were unaffected by electrical stimulation. In the third experiment, we assessed the effect of mechanical adaptation on the detection thresholds to transcutaneous electrical nerve stimuli, measured before and after adaptation. Electrical detection thresholds were unaffected by the mechanical adaptation. Taken together, our results suggest that vibrotactile adaptation is predominantly the consequence of peripheral mechanoreceptor processes and/or changes in biomechanical properties of the skin.

hi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Silent Expectations: Dynamic Causal Modeling of Cortical Prediction and Attention to Sounds That Weren’t

Chennu, S., Noreika, V., Gueorguiev, D., Shtyrov, Y., Bekinschtein, T. A., Henson, R.

Journal of Neuroscience, 36(32):8305-8316, Society for Neuroscience, 2016 (article)

Abstract
There is increasing evidence that human perception is realized by a hierarchy of neural processes in which predictions sent backward from higher levels result in prediction errors that are fed forward from lower levels, to update the current model of the environment. Moreover, the precision of prediction errors is thought to be modulated by attention. Much of this evidence comes from paradigms in which a stimulus differs from that predicted by the recent history of other stimuli (generating a so-called {\textquotedblleft}mismatch response{\textquotedblright}). There is less evidence from situations where a prediction is not fulfilled by any sensory input (an {\textquotedblleft}omission{\textquotedblright} response). This situation arguably provides a more direct measure of {\textquotedblleft}top-down{\textquotedblright} predictions in the absence of confounding {\textquotedblleft}bottom-up{\textquotedblright} input. We applied Dynamic Causal Modeling of evoked electromagnetic responses recorded by EEG and MEG to an auditory paradigm in which we factorially crossed the presence versus absence of {\textquotedblleft}bottom-up{\textquotedblright} stimuli with the presence versus absence of {\textquotedblleft}top-down{\textquotedblright} attention. Model comparison revealed that both mismatch and omission responses were mediated by increased forward and backward connections, differing primarily in the driving input. In both responses, modeling results suggested that the presence of attention selectively modulated backward {\textquotedblleft}prediction{\textquotedblright} connections. Our results provide new model-driven evidence of the pure top-down prediction signal posited in theories of hierarchical perception, and highlight the role of attentional precision in strengthening this prediction.SIGNIFICANCE STATEMENT Human auditory perception is thought to be realized by a network of neurons that maintain a model of and predict future stimuli. Much of the evidence for this comes from experiments where a stimulus unexpectedly differs from previous ones, which generates a well-known {\textquotedblleft}mismatch response.{\textquotedblright} But what happens when a stimulus is unexpectedly omitted altogether? By measuring the brain{\textquoteright}s electromagnetic activity, we show that it also generates an {\textquotedblleft}omission response{\textquotedblright} that is contingent on the presence of attention. We model these responses computationally, revealing that mismatch and omission responses only differ in the location of inputs into the same underlying neuronal network. In both cases, we show that attention selectively strengthens the brain{\textquoteright}s prediction of the future.

hi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Event-based Sampling for Reducing Communication Load in Realtime Human Motion Analysis by Wireless Inertial Sensor Networks

Laidig, D., Trimpe, S., Seel, T.

Current Directions in Biomedical Engineering, 2(1):711-714, De Gruyter, 2016 (article)

am ics

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Touch uses frictional cues to discriminate flat materials

Gueorguiev, D., Bochereau, S., Mouraux, A., Hayward, V., Thonnard, J.

Scientific reports, 6, pages: 25553, Nature Publishing Group, 2016 (article)

hi

[BibTex]

[BibTex]


no image
Momentum Control with Hierarchical Inverse Dynamics on a Torque-Controlled Humanoid

Herzog, A., Rotella, N., Mason, S., Grimminger, F., Schaal, S., Righetti, L.

Autonomous Robots, 40(3):473-491, 2016 (article)

Abstract
Hierarchical inverse dynamics based on cascades of quadratic programs have been proposed for the control of legged robots. They have important benefits but to the best of our knowledge have never been implemented on a torque controlled humanoid where model inaccuracies, sensor noise and real-time computation requirements can be problematic. Using a reformulation of existing algorithms, we propose a simplification of the problem that allows to achieve real-time control. Momentum-based control is integrated in the task hierarchy and a LQR design approach is used to compute the desired associated closed-loop behavior and improve performance. Extensive experiments on various balancing and tracking tasks show very robust performance in the face of unknown disturbances, even when the humanoid is standing on one foot. Our results demonstrate that hierarchical inverse dynamics together with momentum control can be efficiently used for feedback control under real robot conditions.

am mg

link (url) DOI [BibTex]


no image
Bioinspired Motor Control for Articulated Robots [From the Guest Editors]

Vitiello, Nicola, Ijspeert, Auke J, Schaal, S.

IEEE Robotics {\&} Automation Magazine, 23(1):20-21, 2016 (article)

am

[BibTex]

[BibTex]

2015


no image
Reducing Student Anonymity and Increasing Engagement

Kuchenbecker, K. J.

University of Pennsylvania Almanac, 62(18):8, November 2015 (article)

hi

[BibTex]

2015


[BibTex]


no image
Surgeons and Non-Surgeons Prefer Haptic Feedback of Instrument Vibrations During Robotic Surgery

Koehn, J. K., Kuchenbecker, K. J.

Surgical Endoscopy, 29(10):2970-2983, October 2015 (article)

hi

[BibTex]

[BibTex]


no image
Displaying Sensed Tactile Cues with a Fingertip Haptic Device

Pacchierotti, C., Prattichizzo, D., Kuchenbecker, K. J.

IEEE Transactions on Haptics, 8(4):384-396, October 2015 (article)

hi

[BibTex]

[BibTex]


no image
A thin film active-lens with translational control for dynamically programmable optical zoom

Yun, S., Park, S., Park, B., Nam, S., Park, S. K., Kyung, K.

Applied Physics Letters, 107(8):081907, AIP Publishing, August 2015 (article)

Abstract
We demonstrate a thin film active-lens for rapidly and dynamically controllable optical zoom. The active-lens is composed of a convex hemispherical polydimethylsiloxane (PDMS) lens structure working as an aperture and a dielectric elastomer (DE) membrane actuator, which is a combination of a thin DE layer made with PDMS and a compliant electrode pattern using silver-nanowires. The active-lens is capable of dynamically changing focal point of the soft aperture as high as 18.4% through its translational movement in vertical direction responding to electrically induced bulged-up deformation of the DE membrane actuator. Under operation with various sinusoidal voltage signals, the movement responses are fairly consistent with those estimated from numerical simulation. The responses are not only fast, fairly reversible, and highly durable during continuous cyclic operations, but also large enough to impart dynamic focus tunability for optical zoom in microscopic imaging devices with a light-weight and ultra-slim configuration.

hi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Data-Driven Motion Mappings Improve Transparency in Teleoperation

Khurshid, R. P., Kuchenbecker, K. J.

Presence: Teleoperators and Virtual Environments, 24(2):132-154, May 2015 (article)

hi

[BibTex]

[BibTex]


no image
Robotic Learning of Haptic Adjectives Through Physical Interaction

Chu, V., McMahon, I., Riano, L., McDonald, C. G., He, Q., Perez-Tejada, J. M., Arrigo, M., Darrell, T., Kuchenbecker, K. J.

Robotics and Autonomous Systems, 63(3):279-292, 2015, Vivian Chu, Ian MacMahon, and Lorenzo Riano contributed equally to this publication. Corrigendum published in June 2016 (article)

hi

[BibTex]

[BibTex]


no image
Effects of Vibrotactile Feedback on Human Motor Learning of Arbitrary Arm Motions

Bark, K., Hyman, E., Tan, F., Cha, E., Jax, S. A., Buxbaum, L. J., Kuchenbecker, K. J.

IEEE Transactions on Neural Systems and Rehabilitation Engineering, 23(1):51-63, January 2015 (article)

hi

[BibTex]

[BibTex]


Sensory synergy as environmental input integration
Sensory synergy as environmental input integration

Alnajjar, F., Itkonen, M., Berenz, V., Tournier, M., Nagai, C., Shimoda, S.

Frontiers in Neuroscience, 8, pages: 436, 2015 (article)

Abstract
The development of a method to feed proper environmental inputs back to the central nervous system (CNS) remains one of the challenges in achieving natural movement when part of the body is replaced with an artificial device. Muscle synergies are widely accepted as a biologically plausible interpretation of the neural dynamics between the CNS and the muscular system. Yet the sensorineural dynamics of environmental feedback to the CNS has not been investigated in detail. In this study, we address this issue by exploring the concept of sensory synergy. In contrast to muscle synergy, we hypothesize that sensory synergy plays an essential role in integrating the overall environmental inputs to provide low-dimensional information to the CNS. We assume that sensor synergy and muscle synergy communicate using these low-dimensional signals. To examine our hypothesis, we conducted posture control experiments involving lateral disturbance with 9 healthy participants. Proprioceptive information represented by the changes on muscle lengths were estimated by using the musculoskeletal model analysis software SIMM. Changes on muscles lengths were then used to compute sensory synergies. The experimental results indicate that the environmental inputs were translated into the two dimensional signals and used to move the upper limb to the desired position immediately after the lateral disturbance. Participants who showed high skill in posture control were found to be likely to have a strong correlation between sensory and muscle signaling as well as high coordination between the utilized sensory synergies. These results suggest the importance of integrating environmental inputs into suitable low-dimensional signals before providing them to the CNS. This mechanism should be essential when designing the prosthesis’ sensory system to make the controller simpler

am

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Active Reward Learning with a Novel Acquisition Function

Daniel, C., Kroemer, O., Viering, M., Metz, J., Peters, J.

Autonomous Robots, 39(3):389-405, 2015 (article)

am ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Learning Movement Primitive Attractor Goals and Sequential Skills from Kinesthetic Demonstrations

Manschitz, S., Kober, J., Gienger, M., Peters, J.

Robotics and Autonomous Systems, 74, Part A, pages: 97-107, 2015 (article)

am ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Bayesian Optimization for Learning Gaits under Uncertainty

Calandra, R., Seyfarth, A., Peters, J., Deisenroth, M.

Annals of Mathematics and Artificial Intelligence, pages: 1-19, 2015 (article)

am ei

DOI [BibTex]

DOI [BibTex]

2009


Towards Grasp-Oriented Visual Perception of Humanoid Robots
Towards Grasp-Oriented Visual Perception of Humanoid Robots

Bohg, J., Barck-Holst, C., Huebner, K., Ralph, M., Rasolzadeh, B., Song, D., Kragic, D.

International Journal of Humanoid Robotics, 06(03):387-434, 2009 (article)

Abstract
A distinct property of robot vision systems is that they are embodied. Visual information is extracted for the purpose of moving in and interacting with the environment. Thus, different types of perception-action cycles need to be implemented and evaluated. In this paper, we study the problem of designing a vision system for the purpose of object grasping in everyday environments. This vision system is firstly targeted at the interaction with the world through recognition and grasping of objects and secondly at being an interface for the reasoning and planning module to the real world. The latter provides the vision system with a certain task that drives it and defines a specific context, i.e. search for or identify a certain object and analyze it for potential later manipulation. We deal with cases of: (i) known objects, (ii) objects similar to already known objects, and (iii) unknown objects. The perception-action cycle is connected to the reasoning system based on the idea of affordances. All three cases are also related to the state of the art and the terminology in the neuroscientific area.

am

pdf DOI [BibTex]

2009


pdf DOI [BibTex]


Valero-Cuevas, F., Hoffmann, H., Kurse, M. U., Kutch, J. J., Theodorou, E. A.

IEEE Reviews in Biomedical Engineering – (All authors have equally contributed), (2):110?135, 2009, clmc (article)

Abstract
Computational models of the neuromuscular system hold the potential to allow us to reach a deeper understanding of neuromuscular function and clinical rehabilitation by complementing experimentation. By serving as a means to distill and explore specific hypotheses, computational models emerge from prior experimental data and motivate future experimental work. Here we review computational tools used to understand neuromuscular function including musculoskeletal modeling, machine learning, control theory, and statistical model analysis. We conclude that these tools, when used in combination, have the potential to further our understanding of neuromuscular function by serving as a rigorous means to test scientific hypotheses in ways that complement and leverage experimental data.

am

link (url) [BibTex]

link (url) [BibTex]


no image
On-line learning and modulation of periodic movements with nonlinear dynamical systems

Gams, A., Ijspeert, A., Schaal, S., Lenarčič, J.

Autonomous Robots, 27(1):3-23, 2009, clmc (article)

Abstract
Abstract  The paper presents a two-layered system for (1) learning and encoding a periodic signal without any knowledge on its frequency and waveform, and (2) modulating the learned periodic trajectory in response to external events. The system is used to learn periodic tasks on a humanoid HOAP-2 robot. The first layer of the system is a dynamical system responsible for extracting the fundamental frequency of the input signal, based on adaptive frequency oscillators. The second layer is a dynamical system responsible for learning of the waveform based on a built-in learning algorithm. By combining the two dynamical systems into one system we can rapidly teach new trajectories to robots without any knowledge of the frequency of the demonstration signal. The system extracts and learns only one period of the demonstration signal. Furthermore, the trajectories are robust to perturbations and can be modulated to cope with a dynamic environment. The system is computationally inexpensive, works on-line for any periodic signal, requires no additional signal processing to determine the frequency of the input signal and can be applied in parallel to multiple dimensions. Additionally, it can adapt to changes in frequency and shape, e.g. to non-stationary signals, such as hand-generated signals and human demonstrations.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Local dimensionality reduction for non-parametric regression

Hoffman, H., Schaal, S., Vijayakumar, S.

Neural Processing Letters, 2009, clmc (article)

Abstract
Locally-weighted regression is a computationally-efficient technique for non-linear regression. However, for high-dimensional data, this technique becomes numerically brittle and computationally too expensive if many local models need to be maintained simultaneously. Thus, local linear dimensionality reduction combined with locally-weighted regression seems to be a promising solution. In this context, we review linear dimensionality-reduction methods, compare their performance on nonparametric locally-linear regression, and discuss their ability to extend to incremental learning. The considered methods belong to the following three groups: (1) reducing dimensionality only on the input data, (2) modeling the joint input-output data distribution, and (3) optimizing the correlation between projection directions and output data. Group 1 contains principal component regression (PCR); group 2 contains principal component analysis (PCA) in joint input and output space, factor analysis, and probabilistic PCA; and group 3 contains reduced rank regression (RRR) and partial least squares (PLS) regression. Among the tested methods, only group 3 managed to achieve robust performance even for a non-optimal number of components (factors or projection directions). In contrast, group 1 and 2 failed for fewer components since these methods rely on the correct estimate of the true intrinsic dimensionality. In group 3, PLS is the only method for which a computationally-efficient incremental implementation exists. Thus, PLS appears to be ideally suited as a building block for a locally-weighted regressor in which projection directions are incrementally added on the fly.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Incorporating Muscle Activation-Contraction dynamics to an optimal control framework for finger movements

Theodorou, Evangelos A., Valero-Cuevas, Francisco J.

Abstracts of Neural Control of Movement Conference (NCM 2009), 2009, clmc (article)

Abstract
Recent experimental and theoretical work [1] investigated the neural control of contact transition between motion and force during tapping with the index finger as a nonlinear optimization problem. Such transitions from motion to well-directed contact force are a fundamental part of dexterous manipulation. There are 3 alternative hypotheses of how this transition could be accomplished by the nervous system as a function of changes in direction and magnitude of the torque vector controlling the finger. These hypotheses are 1) an initial change in direction with a subsequent change in magnitude of the torque vector; 2) an initial change in magnitude with a subsequent directional change of the torque vector; and 3) a simultaneous and proportionally equal change of both direction and magnitude of the torque vector. Experimental work in [2] shows that the nervous system selects the first strategy, and in [1] we suggest that this may in fact be the optimal strategy. In [4] the framework of Iterative Linear Quadratic Optimal Regulator (ILQR) was extended to incorporate motion and force control. However, our prior simulation work assumed direct and instantaneous control of joint torques, which ignores the known delays and filtering properties of skeletal muscle. In this study, we implement an ILQR controller for a more biologically plausible biomechanical model of the index finger than [4], and add activation-contraction dynamics to the system to simulate muscle function. The planar biomechanical model includes the kinematics of the 3 joints while the applied torques are driven by activation?contraction dynamics with biologically plausible time constants [3]. In agreement with our experimental work [2], the task is to, within 500 ms, move the finger from a given resting configuration to target configuration with a desired terminal velocity. ILQR does not only stabilize the finger dynamics according to the objective function, but it also generates smooth joint space trajectories with minimal tuning and without an a-priori initial control policy (which is difficult to find for highly dimensional biomechanical systems). Furthemore, the use of this optimal control framework and the addition of activation-contraction dynamics considers the full nonlinear dynamics of the index finger and produces a sequence of postures which are compatible with experimental motion data [2]. These simulations combined with prior experimental results suggest that optimal control is a strong candidate for the generation of finger movements prior to abrupt motion-to-force transitions. This work is funded in part by grants NIH R01 0505520 and NSF EFRI-0836042 to Dr. Francisco J. Valero- Cuevas 1 Venkadesan M, Valero-Cuevas FJ. 
Effects of neuromuscular lags on controlling contact transitions. 
Philosophical Transactions of the Royal Society A: 2008. 2 Venkadesan M, Valero-Cuevas FJ. 
Neural Control of Motion-to-Force Transitions with the Fingertip. 
J. Neurosci., Feb 2008; 28: 1366 - 1373; 3 Zajac. Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Crit Rev Biomed Eng, 17 4. Weiwei Li., Francisco Valero Cuevas: ?Linear Quadratic Optimal Control of Contact Transition with Fingertip ? ACC 2009

am

PDF [BibTex]

PDF [BibTex]


no image
On-line learning and modulation of periodic movements with nonlinear dynamical systems

Gams, A., Ijspeert, A., Schaal, S., Lenarčič, J.

Autonomous Robots, 27(1):3-23, 2009, clmc (article)

Abstract
Abstract  The paper presents a two-layered system for (1) learning and encoding a periodic signal without any knowledge on its frequency and waveform, and (2) modulating the learned periodic trajectory in response to external events. The system is used to learn periodic tasks on a humanoid HOAP-2 robot. The first layer of the system is a dynamical system responsible for extracting the fundamental frequency of the input signal, based on adaptive frequency oscillators. The second layer is a dynamical system responsible for learning of the waveform based on a built-in learning algorithm. By combining the two dynamical systems into one system we can rapidly teach new trajectories to robots without any knowledge of the frequency of the demonstration signal. The system extracts and learns only one period of the demonstration signal. Furthermore, the trajectories are robust to perturbations and can be modulated to cope with a dynamic environment. The system is computationally inexpensive, works on-line for any periodic signal, requires no additional signal processing to determine the frequency of the input signal and can be applied in parallel to multiple dimensions. Additionally, it can adapt to changes in frequency and shape, e.g. to non-stationary signals, such as hand-generated signals and human demonstrations.

am

link (url) [BibTex]

link (url) [BibTex]

2008


no image
Learning to control in operational space

Peters, J., Schaal, S.

International Journal of Robotics Research, 27, pages: 197-212, 2008, clmc (article)

Abstract
One of the most general frameworks for phrasing control problems for complex, redundant robots is operational space control. However, while this framework is of essential importance for robotics and well-understood from an analytical point of view, it can be prohibitively hard to achieve accurate control in face of modeling errors, which are inevitable in com- plex robots, e.g., humanoid robots. In this paper, we suggest a learning approach for opertional space control as a direct inverse model learning problem. A first important insight for this paper is that a physically cor- rect solution to the inverse problem with redundant degrees-of-freedom does exist when learning of the inverse map is performed in a suitable piecewise linear way. The second crucial component for our work is based on the insight that many operational space controllers can be understood in terms of a constrained optimal control problem. The cost function as- sociated with this optimal control problem allows us to formulate a learn- ing algorithm that automatically synthesizes a globally consistent desired resolution of redundancy while learning the operational space controller. From the machine learning point of view, this learning problem corre- sponds to a reinforcement learning problem that maximizes an immediate reward. We employ an expectation-maximization policy search algorithm in order to solve this problem. Evaluations on a three degrees of freedom robot arm are used to illustrate the suggested approach. The applica- tion to a physically realistic simulator of the anthropomorphic SARCOS Master arm demonstrates feasibility for complex high degree-of-freedom robots. We also show that the proposed method works in the setting of learning resolved motion rate control on real, physical Mitsubishi PA-10 medical robotics arm.

am ei

link (url) DOI [BibTex]

2008


link (url) DOI [BibTex]


no image
Adaptation to a sub-optimal desired trajectory

M. Mistry, E. A. G. L. T. Y. S. S. M. K.

Advances in Computational Motor Control VII, Symposium at the Society for Neuroscience Meeting, Washington DC, 2008, 2008, clmc (article)

am

PDF [BibTex]

PDF [BibTex]


no image
Operational space control: A theoretical and emprical comparison

Nakanishi, J., Cory, R., Mistry, M., Peters, J., Schaal, S.

International Journal of Robotics Research, 27(6):737-757, 2008, clmc (article)

Abstract
Dexterous manipulation with a highly redundant movement system is one of the hallmarks of hu- man motor skills. From numerous behavioral studies, there is strong evidence that humans employ compliant task space control, i.e., they focus control only on task variables while keeping redundant degrees-of-freedom as compliant as possible. This strategy is robust towards unknown disturbances and simultaneously safe for the operator and the environment. The theory of operational space con- trol in robotics aims to achieve similar performance properties. However, despite various compelling theoretical lines of research, advanced operational space control is hardly found in actual robotics imple- mentations, in particular new kinds of robots like humanoids and service robots, which would strongly profit from compliant dexterous manipulation. To analyze the pros and cons of different approaches to operational space control, this paper focuses on a theoretical and empirical evaluation of different methods that have been suggested in the literature, but also some new variants of operational space controllers. We address formulations at the velocity, acceleration and force levels. First, we formulate all controllers in a common notational framework, including quaternion-based orientation control, and discuss some of their theoretical properties. Second, we present experimental comparisons of these approaches on a seven-degree-of-freedom anthropomorphic robot arm with several benchmark tasks. As an aside, we also introduce a novel parameter estimation algorithm for rigid body dynamics, which ensures physical consistency, as this issue was crucial for our successful robot implementations. Our extensive empirical results demonstrate that one of the simplified acceleration-based approaches can be advantageous in terms of task performance, ease of parameter tuning, and general robustness and compliance in face of inevitable modeling errors.

am

link (url) [BibTex]

link (url) [BibTex]


no image
A library for locally weighted projection regression

Klanke, S., Vijayakumar, S., Schaal, S.

Journal of Machine Learning Research, 9, pages: 623-626, 2008, clmc (article)

Abstract
In this paper we introduce an improved implementation of locally weighted projection regression (LWPR), a supervised learning algorithm that is capable of handling high-dimensional input data. As the key features, our code supports multi-threading, is available for multiple platforms, and provides wrappers for several programming languages.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Optimization strategies in human reinforcement learning

Hoffmann, H., Theodorou, E., Schaal, S.

Advances in Computational Motor Control VII, Symposium at the Society for Neuroscience Meeting, Washington DC, 2008, 2008, clmc (article)

am

PDF [BibTex]

PDF [BibTex]

2002


no image
Forward models in visuomotor control

Mehta, B., Schaal, S.

J Neurophysiol, 88(2):942-53, August 2002, clmc (article)

Abstract
In recent years, an increasing number of research projects investigated whether the central nervous system employs internal models in motor control. While inverse models in the control loop can be identified more readily in both motor behavior and the firing of single neurons, providing direct evidence for the existence of forward models is more complicated. In this paper, we will discuss such an identification of forward models in the context of the visuomotor control of an unstable dynamic system, the balancing of a pole on a finger. Pole balancing imposes stringent constraints on the biological controller, as it needs to cope with the large delays of visual information processing while keeping the pole at an unstable equilibrium. We hypothesize various model-based and non-model-based control schemes of how visuomotor control can be accomplished in this task, including Smith Predictors, predictors with Kalman filters, tapped-delay line control, and delay-uncompensated control. Behavioral experiments with human participants allow exclusion of most of the hypothesized control schemes. In the end, our data support the existence of a forward model in the sensory preprocessing loop of control. As an important part of our research, we will provide a discussion of when and how forward models can be identified and also the possible pitfalls in the search for forward models in control.

am

link (url) [BibTex]

2002


link (url) [BibTex]


no image
Scalable techniques from nonparameteric statistics for real-time robot learning

Schaal, S., Atkeson, C. G., Vijayakumar, S.

Applied Intelligence, 17(1):49-60, 2002, clmc (article)

Abstract
Locally weighted learning (LWL) is a class of techniques from nonparametric statistics that provides useful representations and training algorithms for learning about complex phenomena during autonomous adaptive control of robotic systems. This paper introduces several LWL algorithms that have been tested successfully in real-time learning of complex robot tasks. We discuss two major classes of LWL, memory-based LWL and purely incremental LWL that does not need to remember any data explicitly. In contrast to the traditional belief that LWL methods cannot work well in high-dimensional spaces, we provide new algorithms that have been tested on up to 90 dimensional learning problems. The applicability of our LWL algorithms is demonstrated in various robot learning examples, including the learning of devil-sticking, pole-balancing by a humanoid robot arm, and inverse-dynamics learning for a seven and a 30 degree-of-freedom robot. In all these examples, the application of our statistical neural networks techniques allowed either faster or more accurate acquisition of motor control than classical control engineering.

am

link (url) [BibTex]

link (url) [BibTex]

2000


no image
A brachiating robot controller

Nakanishi, J., Fukuda, T., Koditschek, D. E.

IEEE Transactions on Robotics and Automation, 16(2):109-123, 2000, clmc (article)

Abstract
We report on our empirical studies of a new controller for a two-link brachiating robot. Motivated by the pendulum-like motion of an apeâ??s brachiation, we encode this task as the output of a â??target dynamical system.â? Numerical simulations indicate that the resulting controller solves a number of brachiation problems that we term the â??ladder,â? â??swing-up,â? and â??ropeâ? problems. Preliminary analysis provides some explanation for this success. The proposed controller is implemented on a physical system in our laboratory. The robot achieves behaviors including â??swing locomotionâ? and â??swing upâ? and is capable of continuous locomotion over several rungs of a ladder. We discuss a number of formal questions whose answers will be required to gain a full understanding of the strengths and weaknesses of this approach.

am

link (url) [BibTex]

2000


link (url) [BibTex]


no image
Interaction of rhythmic and discrete pattern generators in single joint movements

Sternad, D., Dean, W. J., Schaal, S.

Human Movement Science, 19(4):627-665, 2000, clmc (article)

Abstract
The study investigates a single-joint movement task that combines a translatory and cyclic component with the objective to investigate the interaction of discrete and rhythmic movement elements. Participants performed an elbow movement in the horizontal plane, oscillating at a prescribed frequency around one target and shifting to a second target upon a trigger signal, without stopping the oscillation. Analyses focused on extracting the mutual influences of the rhythmic and the discrete component of the task. Major findings are: (1) The onset of the discrete movement was confined to a limited phase window in the rhythmic cycle. (2) Its duration was influenced by the period of oscillation. (3) The rhythmic oscillation was "perturbed" by the discrete movement as indicated by phase resetting. On the basis of these results we propose a model for the coordination of discrete and rhythmic actions (K. Matsuoka, Sustained oscillations generated by mutually inhibiting neurons with adaptations, Biological Cybernetics 52 (1985) 367-376; Mechanisms of frequency and pattern control in the neural rhythm generators, Biological Cybernetics 56 (1987) 345-353). For rhythmic movements an oscillatory pattern generator is developed following models of half-center oscillations (D. Bullock, S. Grossberg, The VITE model: a neural command circuit for generating arm and articulated trajectories, in: J.A.S. Kelso, A.J. Mandel, M. F. Shlesinger (Eds.), Dynamic Patterns in Complex Systems. World Scientific. Singapore. 1988. pp. 305-326). For discrete movements a point attractor dynamics is developed close to the VITE model For each joint degree of freedom both pattern generators co-exist but exert mutual inhibition onto each other. The suggested modeling framework provides a unified account for both discrete and rhythmic movements on the basis of neuronal circuitry. Simulation results demonstrated that the effects observed in human performance can be replicated using the two pattern generators with a mutually inhibiting coupling.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Dynamics of a bouncing ball in human performance

Sternad, D., Duarte, M., Katsumata, H., Schaal, S.

Physical Review E, 63(011902):1-8, 2000, clmc (article)

Abstract
On the basis of a modified bouncing-ball model, we investigated whether human movements utilize principles of dynamic stability in their performance of a similar movement task. Stability analyses of the model provided predictions about conditions indicative of a dynamically stable period-one regime. In a series of experiments, human subjects bounced a ball rhythmically on a racket and displayed these conditions supporting that they attuned to and exploited the dynamic stability properties of the task.

am

link (url) [BibTex]

link (url) [BibTex]

1995


no image
Memory-based neural networks for robot learning

Atkeson, C. G., Schaal, S.

Neurocomputing, 9, pages: 1-27, 1995, clmc (article)

Abstract
This paper explores a memory-based approach to robot learning, using memory-based neural networks to learn models of the task to be performed. Steinbuch and Taylor presented neural network designs to explicitly store training data and do nearest neighbor lookup in the early 1960s. In this paper their nearest neighbor network is augmented with a local model network, which fits a local model to a set of nearest neighbors. This network design is equivalent to a statistical approach known as locally weighted regression, in which a local model is formed to answer each query, using a weighted regression in which nearby points (similar experiences) are weighted more than distant points (less relevant experiences). We illustrate this approach by describing how it has been used to enable a robot to learn a difficult juggling task. Keywords: memory-based, robot learning, locally weighted regression, nearest neighbor, local models.

am

link (url) [BibTex]

1995


link (url) [BibTex]