Header logo is


2020


no image
Sampling on networks: estimating spectral centrality measures and their impact in evaluating other relevant network measures

Ruggeri, N., De Bacco, C.

Applied Network Science, 5:81, October 2020 (article)

Abstract
We perform an extensive analysis of how sampling impacts the estimate of several relevant network measures. In particular, we focus on how a sampling strategy optimized to recover a particular spectral centrality measure impacts other topological quantities. Our goal is on one hand to extend the analysis of the behavior of TCEC [Ruggeri2019], a theoretically-grounded sampling method for eigenvector centrality estimation. On the other hand, to demonstrate more broadly how sampling can impact the estimation of relevant network properties like centrality measures different than the one aimed at optimizing, community structure and node attribute distribution. Finally, we adapt the theoretical framework behind TCEC for the case of PageRank centrality and propose a sampling algorithm aimed at optimizing its estimation. We show that, while the theoretical derivation can be suitably adapted to cover this case, the resulting algorithm suffers of a high computational complexity that requires further approximations compared to the eigenvector centrality case.

pio

Code Preprint pdf DOI [BibTex]


no image
Optimal transport for multi-commodity routing on networks

Lonardi, A., Facca, E., Putti, M., De Bacco, C.

October 2020 (article) Submitted

Abstract
We present a model for finding optimal multi-commodity flows on networks based on optimal transport theory. The model relies on solving a dynamical system of equations. We prove that its stationary solution is equivalent to the solution of an optimization problem that generalizes the one-commodity framework. In particular, it generalizes previous results in terms of optimality, scaling, and phase transitions obtained in the one-commodity case. Remarkably, for a suitable range of parameters, the optimal topologies have loops. This is radically different to the one-commodity case, where within an analogous parameter range the optimal topologies are trees. This important result is a consequence of the extension of Kirkchoff's law to the multi-commodity case, which enforces the distinction between fluxes of the different commodities. Our results provide new insights into the nature and properties of optimal network topologies. In particular, they show that loops can arise as a consequence of distinguishing different flow types, and complement previous results where loops, in the one-commodity case, were arising as a consequence of imposing dynamical rules to the sources and sinks or when enforcing robustness to damage. Finally, we provide an efficient implementation for each of the two equivalent numerical frameworks, both of which achieve a computational complexity that is more efficient than that of standard optimization methods based on gradient descent. As a result, our model is not merely abstract but can be efficiently applied to large datasets. We give an example of concrete application by studying the network of the Paris metro.

pio

Code Preprint [BibTex]


no image
Community detection with node attributes in multilayer networks

Contisciani, M., Power, E. A., De Bacco, C.

Nature Scientific Reports, 10, pages: 15736, September 2020 (article)

pio

Code Preprint pdf [BibTex]

Code Preprint pdf [BibTex]


A little damping goes a long way: a simulation study of how damping influences task-level stability in running
A little damping goes a long way: a simulation study of how damping influences task-level stability in running

Heim, S., Millard, M., Mouel, C. L., Badri-Spröwitz, A.

Biology Letters, 16(9), September 2020 (article)

Abstract
It is currently unclear if damping plays a functional role in legged locomotion, and simple models often do not include damping terms. We present a new model with a damping term that is isolated from other parameters: that is, the damping term can be adjusted without retuning other model parameters for nominal motion. We systematically compare how increased damping affects stability in the face of unexpected ground-height perturbations. Unlike most studies, we focus on task-level stability: instead of observing whether trajectories converge towards a nominal limit-cycle, we quantify the ability to avoid falls using a recently developed mathematical measure. This measure allows trajectories to be compared quantitatively instead of only being separated into a binary classification of ‘stable' or ‘unstable'. Our simulation study shows that increased damping contributes significantly to task-level stability; however, this benefit quickly plateaus after only a small amount of damping. These results suggest that the low intrinsic damping values observed experimentally may have stability benefits and are not simply minimized for energetic reasons. All Python code and data needed to generate our results are available open source.

dlg ics

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Combining learned and analytical models for predicting action effects from sensory data
Combining learned and analytical models for predicting action effects from sensory data

Kloss, A., Schaal, S., Bohg, J.

International Journal of Robotics Research, September 2020 (article)

Abstract
One of the most basic skills a robot should possess is predicting the effect of physical interactions with objects in the environment. This enables optimal action selection to reach a certain goal state. Traditionally, dynamics are approximated by physics-based analytical models. These models rely on specific state representations that may be hard to obtain from raw sensory data, especially if no knowledge of the object shape is assumed. More recently, we have seen learning approaches that can predict the effect of complex physical interactions directly from sensory input. It is however an open question how far these models generalize beyond their training data. In this work, we investigate the advantages and limitations of neural network based learning approaches for predicting the effects of actions based on sensory input and show how analytical and learned models can be combined to leverage the best of both worlds. As physical interaction task, we use planar pushing, for which there exists a well-known analytical model and a large real-world dataset. We propose to use a convolutional neural network to convert raw depth images or organized point clouds into a suitable representation for the analytical model and compare this approach to using neural networks for both, perception and prediction. A systematic evaluation of the proposed approach on a very large real-world dataset shows two main advantages of the hybrid architecture. Compared to a pure neural network, it significantly (i) reduces required training data and (ii) improves generalization to novel physical interaction.

am

arXiv pdf link (url) DOI [BibTex]


Event-triggered Learning
Event-triggered Learning

Solowjow, F., Trimpe, S.

Automatica, 117, Elsevier, July 2020 (article)

ics

arXiv PDF DOI Project Page [BibTex]

arXiv PDF DOI Project Page [BibTex]


no image
Phenomenal Causality and Sensory Realism

Meding, K., Bruijns, S. A., Schölkopf, B., Berens, P., Wichmann, F. A.

i-Perception, 11(3):1-16, June 2020 (article)

ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Biocompatible magnetic micro‐ and nanodevices: Fabrication of FePt nanopropellers and cell transfection
Biocompatible magnetic micro‐ and nanodevices: Fabrication of FePt nanopropellers and cell transfection

Kadiri, V. M., Bussi, C., Holle, A. W., Son, K., Kwon, H., Schütz, G., Gutierrez, M. G., Fischer, P.

Adv. Mat., 32(2001114), May 2020 (article)

Abstract
The application of nanoparticles for drug or gene delivery promises benefits in the form of single‐cell‐specific therapeutic and diagnostic capabilities. Many methods of cell transfection rely on unspecific means to increase the transport of genetic material into cells. Targeted transport is in principle possible with magnetically propelled micromotors, which allow responsive nanoscale actuation and delivery. However, many commonly used magnetic materials (e.g., Ni and Co) are not biocompatible, possess weak magnetic remanence (Fe3O4), or cannot be implemented in nanofabrication schemes (NdFeB). Here, it is demonstrated that co‐depositing iron (Fe) and platinum (Pt) followed by one single annealing step, without the need for solution processing, yields ferromagnetic FePt nanomotors that are noncytotoxic, biocompatible, and possess a remanence and magnetization that rival those of permanent NdFeB micromagnets. Active cell targeting and magnetic transfection of lung carcinoma cells are demonstrated using gradient‐free rotating millitesla fields to drive the FePt nanopropellers. The carcinoma cells express enhanced green fluorescent protein after internalization and cell viability is unaffected by the presence of the FePt nanopropellers. The results establish FePt, prepared in the L10 phase, as a promising magnetic material for biomedical applications with superior magnetic performance, especially for micro‐ and nanodevices.

pf mms

link (url) DOI [BibTex]


Data-efficient Auto-tuning with Bayesian Optimization: An Industrial Control Study
Data-efficient Auto-tuning with Bayesian Optimization: An Industrial Control Study

Neumann-Brosig, M., Marco, A., Schwarzmann, D., Trimpe, S.

IEEE Transactions on Control Systems Technology, 28(3):730-740, May 2020 (article)

Abstract
Bayesian optimization is proposed for automatic learning of optimal controller parameters from experimental data. A probabilistic description (a Gaussian process) is used to model the unknown function from controller parameters to a user-defined cost. The probabilistic model is updated with data, which is obtained by testing a set of parameters on the physical system and evaluating the cost. In order to learn fast, the Bayesian optimization algorithm selects the next parameters to evaluate in a systematic way, for example, by maximizing information gain about the optimum. The algorithm thus iteratively finds the globally optimal parameters with only few experiments. Taking throttle valve control as a representative industrial control example, the proposed auto-tuning method is shown to outperform manual calibration: it consistently achieves better performance with a low number of experiments. The proposed auto-tuning framework is flexible and can handle different control structures and objectives.

ics

arXiv (PDF) DOI Project Page [BibTex]

arXiv (PDF) DOI Project Page [BibTex]


Statistical reprogramming of macroscopic self-assembly with dynamic boundaries
Statistical reprogramming of macroscopic self-assembly with dynamic boundaries

Culha, U., Davidson, Z. S., Mastrangeli, M., Sitti, M.

Proceedings of the National Academy of Sciences, 117(21):11306-11313, 2020 (article)

Abstract
Self-assembly is a ubiquitous process that can generate complex and functional structures via local interactions among a large set of simpler components. The ability to program the self-assembly pathway of component sets elucidates fundamental physics and enables alternative competitive fabrication technologies. Reprogrammability offers further opportunities for tuning structural and material properties but requires reversible selection from multistable self-assembling patterns, which remains a challenge. Here, we show statistical reprogramming of two-dimensional (2D), noncompact self-assembled structures by the dynamic confinement of orbitally shaken and magnetically repulsive millimeter-scale particles. Under a constant shaking regime, we control the rate of radius change of an assembly arena via moving hard boundaries and select among a finite set of self-assembled patterns repeatably and reversibly. By temporarily trapping particles in topologically identified stable states, we also demonstrate 2D reprogrammable stiffness and three-dimensional (3D) magnetic clutching of the self-assembled structures. Our reprogrammable system has prospective implications for the design of granular materials in a multitude of physical scales where out-of-equilibrium self-assembly can be realized with different numbers or types of particles. Our dynamic boundary regulation may also enable robust bottom-up control strategies for novel robotic assembly applications by designing more complex spatiotemporal interactions using mobile robots.

pi

DOI [BibTex]

DOI [BibTex]


no image
Variational Bayes In Private Settings (VIPS)

Park, M., Foulds, J., Chaudhuri, K., Welling, M.

Journal of Artificial Intelligence Research, 68, pages: 109-157, May 2020 (article)

ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Adaptation and Robust Learning of Probabilistic Movement Primitives

Gomez-Gonzalez, S., Neumann, G., Schölkopf, B., Peters, J.

IEEE Transactions on Robotics, 36(2):366-379, IEEE, March 2020 (article)

ei

arXiv DOI Project Page [BibTex]

arXiv DOI Project Page [BibTex]


no image
DeepMAsED: evaluating the quality of metagenomic assemblies

Mineeva*, O., Rojas-Carulla*, M., Ley, R. E., Schölkopf, B. Y. N. D.

Bioinformatics, 36(10):3011-3017, Febuary 2020, *equal contribution (article)

ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Sliding Mode Control with Gaussian Process Regression for Underwater Robots

Lima, G. S., Trimpe, S., Bessa, W. M.

Journal of Intelligent & Robotic Systems, January 2020 (article)

ics

DOI [BibTex]

DOI [BibTex]


Hierarchical Event-triggered Learning for Cyclically Excited Systems with Application to Wireless Sensor Networks
Hierarchical Event-triggered Learning for Cyclically Excited Systems with Application to Wireless Sensor Networks

Beuchert, J., Solowjow, F., Raisch, J., Trimpe, S., Seel, T.

IEEE Control Systems Letters, 4(1):103-108, January 2020 (article)

ics

arXiv PDF DOI Project Page [BibTex]

arXiv PDF DOI Project Page [BibTex]


Real Time Trajectory Prediction Using Deep Conditional Generative Models
Real Time Trajectory Prediction Using Deep Conditional Generative Models

Gomez-Gonzalez, S., Prokudin, S., Schölkopf, B., Peters, J.

IEEE Robotics and Automation Letters, 5(2):970-976, IEEE, January 2020 (article)

ei ps

arXiv DOI [BibTex]

arXiv DOI [BibTex]


Control-guided Communication: Efficient Resource Arbitration and Allocation in Multi-hop Wireless Control Systems
Control-guided Communication: Efficient Resource Arbitration and Allocation in Multi-hop Wireless Control Systems

Baumann, D., Mager, F., Zimmerling, M., Trimpe, S.

IEEE Control Systems Letters, 4(1):127-132, January 2020 (article)

ics

arXiv PDF DOI [BibTex]

arXiv PDF DOI [BibTex]


no image
Effect of the soft layer thickness of magnetization reversal process of exchange-spring nanomagnet patterns

Son, K., Schütz, G., Goering, E.

{Current Applied Physics}, 20(4):477-483, Elsevier B.V., Amsterdam, 2020 (article)

mms

DOI [BibTex]


{Creating zero-field skyrmions in exchange-biased multilayers through X-ray illumination}
Creating zero-field skyrmions in exchange-biased multilayers through X-ray illumination

Guang, Y., Bykova, I., Liu, Y., Yu, G., Goering, E., Weigand, M., Gräfe, J., Kim, S. K., Zhang, J., Zhang, H., Yan, Z., Wan, C., Feng, J., Wang, X., Guo, C., Wei, H., Peng, Y., Tserkovnyak, Y., Han, X., Schütz, G.

{Nature Communications}, 11, Nature Publishing Group, London, 2020 (article)

Abstract
Skyrmions, magnetic textures with topological stability, hold promises for high-density and energy-efficient information storage devices owing to their small size and low driving-current density. Precise creation of a single nanoscale skyrmion is a prerequisite to further understand the skyrmion physics and tailor skyrmion-based applications. Here, we demonstrate the creation of individual skyrmions at zero-field in an exchange-biased magnetic multilayer with exposure to soft X-rays. In particular, a single skyrmion with 100-nm size can be created at the desired position using a focused X-ray spot of sub-50-nm size. This single skyrmion creation is driven by the X-ray-induced modification of the antiferromagnetic order and the corresponding exchange bias. Furthermore, artificial skyrmion lattices with various arrangements can be patterned using X-ray. These results demonstrate the potential of accurate optical control of single skyrmion at sub-100 nm scale. We envision that X-ray could serve as a versatile tool for local manipulation of magnetic orders.

mms

DOI [BibTex]

DOI [BibTex]


{Tuning the magnetic properties of permalloy-based magnetoplasmonic crystals for sensor applications}
Tuning the magnetic properties of permalloy-based magnetoplasmonic crystals for sensor applications

Murzin, D. V., Belyaev, V. K., Groß, F., Gräfe, J., Rivas, M., Rodionova, V. V.

{Japanese Journal of Applied Physics}, 59(SE), IOP Publishing Ltd, Bristol, England, 2020 (article)

Abstract
Miniature magnetic sensors based on magnetoplasmonic crystals (MPlCs) exhibit high sensitivity and high spatial resolution, which can be obtained by the excitation of surface plasmon polaritons. A field dependence of surface plasmon polaritons' enhanced magneto-optical response strongly correlates with magnetic properties of MPlCs that can be tuned by changing spatial parameters, such as the period and height of diffraction gratings and thicknesses of functional layers. This work compares the magnetic properties of MPlCs based on Ni80Fe20 (permalloy) obtained from local (longitudinal magneto-optical Kerr effect) and bulk (vibrating-sample magnetometry) measurements and demonstrates an ability to control sensors' performance through changing the magnetic properties of the MPlCs. The influence of the substrate's geometry (planar or sinusoidal and trapezoidal diffraction grating profiles) and the thickness of the surface layer is examined.

mms

DOI [BibTex]

DOI [BibTex]


no image
Specific isotope-responsive breathing transition in flexible metal-organic frameworks

Kim, J. Y., Park, J., Ha, J., Jung, M., Wallacher, D., Franz, A., Balderas-Xicohténcatl, R., Hirscher, M., Kang, S. G., Park, J. T., Oh, I. H., Moon, H. R., Oh, H.

Journal of the American Chemical Society, 142(31):13278-13282, American Chemical Society, Washington, DC, 2020 (article)

mms

DOI [BibTex]

DOI [BibTex]


Reprogrammable shape morphing of magnetic soft machines
Reprogrammable shape morphing of magnetic soft machines

Alapan, Y., Karacakol, A. C., Guzelhan, S. N., Isik, I., Sitti, M.

Science Advances, 6(38):eabc6414, 2020 (article)

pi

link (url) [BibTex]

link (url) [BibTex]


Twisting and untwisting of twisted nematic elastomers
Twisting and untwisting of twisted nematic elastomers

Davidson, Z. S., Kapernaum, N., Fiene, J., Giesselmann, F., Sitti, M.

Physical Review Materials, 4, pages: 105601, 2020 (article)

pi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Nanoerythrosome-functionalized biohybrid microswimmers
Nanoerythrosome-functionalized biohybrid microswimmers

Buss, N., Yasa, O., Alapan, Y., Akolpoglu, M. B., Sitti, M.

APL Bioengineering, 4(2):026103, 2020 (article)

pi

DOI [BibTex]

DOI [BibTex]


Microribbons composed of directionally self-assembled nanoflakes as highly stretchable ionic neural electrodes
Microribbons composed of directionally self-assembled nanoflakes as highly stretchable ionic neural electrodes

Zhang, M., Guo, R., Chen, K., Wang, Y., Niu, J., Guo, Y., Zhang, Y., Yin, Z., Xia, K., Zhou, B., Wang, H., He, W., Liu, J., Sitti, M., Zhang, Y.

Proceedings of the National Academy of Sciences, 2020 (article)

pi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Mechanical coupling of puller and pusher active microswimmers influences motility
Mechanical coupling of puller and pusher active microswimmers influences motility

Singh, A. V., Kishore, V., Santamauro, G., Yasa, O., Bill, J., Sitti, M.

Langmuir, 36(19):5435-5443, 2020 (article)

pi

DOI [BibTex]


Thermal Effects on the Crystallization Kinetics, and Interfacial Adhesion of Single-Crystal Phase-Change Gallium
Thermal Effects on the Crystallization Kinetics, and Interfacial Adhesion of Single-Crystal Phase-Change Gallium

Yunusa, M., Lahlou, A., Sitti, M.

Advanced Materials, 32(10):1907453, 2020 (article)

Abstract
Although substrates play an important role upon crystallization of supercooled liquids, the influences of surface temperature and thermal property have remained elusive. Here, the crystallization of supercooled phase‐change gallium (Ga) on substrates with different thermal conductivity is studied. The effect of interfacial temperature on the crystallization kinetics, which dictates thermo‐mechanical stresses between the substrate and the crystallized Ga, is investigated. At an elevated surface temperature, close to the melting point of Ga, an extended single‐crystal growth of Ga on dielectric substrates due to layering effect and annealing is realized without the application of external fields. Adhesive strength at the interfaces depends on the thermal conductivity and initial surface temperature of the substrates. This insight can be applicable to other liquid metals for industrial applications, and sheds more light on phase‐change memory crystallization.

pi

DOI [BibTex]


Magnetically Actuated Soft Capsule Endoscope for Fine-Needle Biopsy
Magnetically Actuated Soft Capsule Endoscope for Fine-Needle Biopsy

Son, D., Gilbert, H., Sitti, M.

Soft robotics, 7(1):10-21, 2020 (article)

pi

DOI [BibTex]

DOI [BibTex]


Injectable Nanoelectrodes Enable Wireless Deep Brain Stimulation of Native Tissue in Freely Moving Mice
Injectable Nanoelectrodes Enable Wireless Deep Brain Stimulation of Native Tissue in Freely Moving Mice

Kozielski, K. L., Jahanshahi, A., Gilbert, H. B., Yu, Y., Erin, O., Francisco, D., Alosaimi, F., Temel, Y., Sitti, M.

arXiv preprint arXiv:2001.11586, 2020 (article)

pi

DOI [BibTex]

DOI [BibTex]


no image
Magnetic state control via field-angle-selective switching in asymmetric rings

Schönke, D., Reeve, R. M., Stoll, H., Kläui, M.

Physical Review Applied, 14(3), American Physical Society, College Park, Md. [u.a.], 2020 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Element-resolved study of the evolution of magnetic response in FexN compounds

Chen, Y., Gölden, D., Dirba, I., Huang, M., Gutfleisch, O., Nagel, P., Merz, M., Schuppler, S., Schütz, G., Alff, L., Goering, E.

{Journal of Magnetism and Magnetic Materials}, 498, NH, Elsevier, Amsterdam, 2020 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
The role of temperature and drive current in skyrmion dynamics

Litzius, K., Leliaert, J., Bassirian, P., Rodrigues, D., Kromin, S., Lemesh, I., Zazvorka, J., Lee, K., Mulkers, J., Kerber, N., Heinze, D., Keil, N., Reeve, R. M., Weigand, M., Van Waeyenberge, B., Schütz, G., Everschor-Sitte, K., Beach, G. S. D., Kläui, M.

{Nature Electronics}, 3(1):30-36, Springer Nature, London, 2020 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Magnetic flux penetration into micron-sized superconductor/ferromagnet bilayers

Simmendinger, J., Weigand, M., Schütz, G., Albrecht, J.

{Superconductor Science and Technology}, 33(2), IOP Pub., Bristol, 2020 (article)

mms

DOI [BibTex]

DOI [BibTex]


Characterization and Thermal Management of a DC Motor-Driven Resonant Actuator for Miniature Mobile Robots with Oscillating Limbs
Characterization and Thermal Management of a DC Motor-Driven Resonant Actuator for Miniature Mobile Robots with Oscillating Limbs

Colmenares, D., Kania, R., Liu, M., Sitti, M.

arXiv preprint arXiv:2002.00798, 2020 (article)

Abstract
In this paper, we characterize the performance of and develop thermal management solutions for a DC motor-driven resonant actuator developed for flapping wing micro air vehicles. The actuator, a DC micro-gearmotor connected in parallel with a torsional spring, drives reciprocal wing motion. Compared to the gearmotor alone, this design increased torque and power density by 161.1% and 666.8%, respectively, while decreasing the drawn current by 25.8%. Characterization of the actuator, isolated from nonlinear aerodynamic loading, results in standard metrics directly comparable to other actuators. The micro-motor, selected for low weight considerations, operates at high power for limited duration due to thermal effects. To predict system performance, a lumped parameter thermal circuit model was developed. Critical model parameters for this micro-motor, two orders of magnitude smaller than those previously characterized, were identified experimentally. This included the effects of variable winding resistance, bushing friction, speed-dependent forced convection, and the addition of a heatsink. The model was then used to determine a safe operation envelope for the vehicle and to design a weight-optimal heatsink. This actuator design and thermal modeling approach could be applied more generally to improve the performance of any miniature mobile robot or device with motor-driven oscillating limbs or loads.

pi

[BibTex]


no image
An Adaptive Optimizer for Measurement-Frugal Variational Algorithms

Kübler, J. M., Arrasmith, A., Cincio, L., Coles, P. J.

Quantum, 4, pages: 263, 2020 (article)

ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Microscale Polarization Color Pixels from Liquid Crystal Elastomers
Microscale Polarization Color Pixels from Liquid Crystal Elastomers

Guo, Y., Shahsavan, H., Sitti, M.

Advanced Optical Materials, Wiley Online Library, 2020 (article)

pi

[BibTex]

[BibTex]


Wearable and Stretchable Strain Sensors: Materials, Sensing Mechanisms, and Applications
Wearable and Stretchable Strain Sensors: Materials, Sensing Mechanisms, and Applications

Souri, H., Banerjee, H., Jusufi, A., Radacsi, N., Stokes, A. A., Park, I., Sitti, M., Amjadi, M.

Advanced Intelligent Systems, 2020 (article)

bio pi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Demonstration of k-vector selective microscopy for nanoscale mapping of higher order spin wave modes

Träger, N., Gruszecki, P., Lisiecki, F., Groß, F., Förster, J., Weigand, M., Glowinski, H., Kuswik, P., Dubowik, J., Krawczyk, M., Gräfe, J.

Nanoscale, 12(33):17238-17244, Royal Society of Chemistry, Cambridge, UK, 2020 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Direct observation of spin-wave focusing by a Fresnel lens

Gräfe, J., Gruszecki, P., Zelent, M., Decker, M., Keskinbora, K., Noske, M., Gawronski, P., Stoll, H., Weigand, M., Krawczyk, M., Back, C. H., Goering, E. J., Schütz, G.

Physical Review B, 102(2), American Physical Society, Woodbury, NY, 2020 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Bandgap-adjustment and enhanced surface photovoltage in Y-substituted LaTaIVO2N

Bubeck, C., Widenmeyer, M., De Denko, A. T., Richter, G., Coduri, M., Salas-Colera, E., Goering, E., Zhang, H., Yoon, S., Osterloh, F. E., Weidenkaff, A.

Journal of Materials Chemistry A, 8(23):11837-11848, Royal Society of Chemistry, Cambridge, UK, 2020 (article)

mms

DOI [BibTex]

DOI [BibTex]


Ultrasound-guided Wireless Tubular Robotic Anchoring System
Ultrasound-guided Wireless Tubular Robotic Anchoring System

Wang, T., Hu, W., Ren, Z., Sitti, M.

IEEE Robotics and Automation Letters, 5(3):4859 - 4866, IEEE, 2020 (article)

pi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


In-air fast response and high speed jumping and rolling of a light-driven hydrogel actuator
In-air fast response and high speed jumping and rolling of a light-driven hydrogel actuator

Li, M., Wang, X., Dong, B., Sitti, M.

Nature Communications, 11(1):1-10, 2020 (article)

pi

link (url) [BibTex]


Pros and Cons: Magnetic versus Optical Microrobots
Pros and Cons: Magnetic versus Optical Microrobots

Sitti, M., Wiersma, D. S.

Advanced Materials, 32(20):1906766, 2020 (article)

Abstract
Mobile microrobotics has emerged as a new robotics field within the last decade to create untethered tiny robots that can access and operate in unprecedented, dangerous, or hard‐to‐reach small spaces noninvasively toward disruptive medical, biotechnology, desktop manufacturing, environmental remediation, and other potential applications. Magnetic and optical actuation methods are the most widely used actuation methods in mobile microrobotics currently, in addition to acoustic and biological (cell‐driven) actuation approaches. The pros and cons of these actuation methods are reported here, depending on the given context. They can both enable long‐range, fast, and precise actuation of single or a large number of microrobots in diverse environments. Magnetic actuation has unique potential for medical applications of microrobots inside nontransparent tissues at high penetration depths, while optical actuation is suitable for more biotechnology, lab‐/organ‐on‐a‐chip, and desktop manufacturing types of applications with much less surface penetration depth requirements or with transparent environments. Combining both methods in new robot designs can have a strong potential of combining the pros of both methods. There is still much progress needed in both actuation methods to realize the potential disruptive applications of mobile microrobots in real‐world conditions.

pi

DOI [BibTex]

DOI [BibTex]


Controlling two-dimensional collective formation and cooperative behavior of magnetic microrobot swarms
Controlling two-dimensional collective formation and cooperative behavior of magnetic microrobot swarms

Dong, X., Sitti, M.

The International Journal of Robotics Research, 39(5):617-638, 2020 (article)

Abstract
Magnetically actuated mobile microrobots can access distant, enclosed, and small spaces, such as inside microfluidic channels and the human body, making them appealing for minimally invasive tasks. Despite their simplicity when scaling down, creating collective microrobots that can work closely and cooperatively, as well as reconfigure their formations for different tasks, would significantly enhance their capabilities such as manipulation of objects. However, a challenge of realizing such cooperative magnetic microrobots is to program and reconfigure their formations and collective motions with under-actuated control signals. This article presents a method of controlling 2D static and time-varying formations among collective self-repelling ferromagnetic microrobots (100 μm to 350 μm in diameter, up to 260 in number) by spatially and temporally programming an external magnetic potential energy distribution at the air–water interface or on solid surfaces. A general design method is introduced to program external magnetic potential energy using ferromagnets. A predictive model of the collective system is also presented to predict the formation and guide the design procedure. With the proposed method, versatile complex static formations are experimentally demonstrated and the programmability and scaling effects of formations are analyzed. We also demonstrate the collective mobility of these magnetic microrobots by controlling them to exhibit bio-inspired collective behaviors such as aggregation, directional motion with arbitrary swarm headings, and rotational swarming motion. Finally, the functions of the produced microrobotic swarm are demonstrated by controlling them to navigate through cluttered environments and complete reconfigurable cooperative manipulation tasks.

pi

DOI [BibTex]

DOI [BibTex]