Header logo is


2009


no image
Path integral-based stochastic optimal control for rigid body dynamics

Theodorou, E. A., Buchli, J., Schaal, S.

In Adaptive Dynamic Programming and Reinforcement Learning, 2009. ADPRL ’09. IEEE Symposium on, pages: 219-225, 2009, clmc (inproceedings)

Abstract
Recent advances on path integral stochastic optimal control [1],[2] provide new insights in the optimal control of nonlinear stochastic systems which are linear in the controls, with state independent and time invariant control transition matrix. Under these assumptions, the Hamilton-Jacobi-Bellman (HJB) equation is formulated and linearized with the use of the logarithmic transformation of the optimal value function. The resulting HJB is a linear second order partial differential equation which is solved by an approximation based on the Feynman-Kac formula [3]. In this work we review the theory of path integral control and derive the linearized HJB equation for systems with state dependent control transition matrix. In addition we derive the path integral formulation for the general class of systems with state dimensionality that is higher than the dimensionality of the controls. Furthermore, by means of a modified inverse dynamics controller, we apply path integral stochastic optimal control over the new control space. Simulations illustrate the theoretical results. Future developments and extensions are discussed.

am

link (url) [BibTex]

2009


link (url) [BibTex]


no image
Learning locomotion over rough terrain using terrain templates

Kalakrishnan, M., Buchli, J., Pastor, P., Schaal, S.

In Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on, pages: 167-172, 2009, clmc (inproceedings)

Abstract
We address the problem of foothold selection in robotic legged locomotion over very rough terrain. The difficulty of the problem we address here is comparable to that of human rock-climbing, where foot/hand-hold selection is one of the most critical aspects. Previous work in this domain typically involves defining a reward function over footholds as a weighted linear combination of terrain features. However, a significant amount of effort needs to be spent in designing these features in order to model more complex decision functions, and hand-tuning their weights is not a trivial task. We propose the use of terrain templates, which are discretized height maps of the terrain under a foothold on different length scales, as an alternative to manually designed features. We describe an algorithm that can simultaneously learn a small set of templates and a foothold ranking function using these templates, from expert-demonstrated footholds. Using the LittleDog quadruped robot, we experimentally show that the use of terrain templates can produce complex ranking functions with higher performance than standard terrain features, and improved generalization to unseen terrain.

am

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
One-dimensional phthalocyanine nanostructures directed by gold templates

Krauss, T. N., Barrena, E., Lohmüller, T., Kelsch, M., Breitling, A., Van Aken, P. A., Spatz, J., Dosch, H.

{Chemistry of Materials}, 21, pages: 5010-5015, 2009 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Near-edge X-ray absorption fine-structure microscopy of organic and magnetic materials

Ade, H., Stoll, H.

{Nature Materials}, 8, pages: 281-290, 2009 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
X-ray imaging of the dynamic magnetic vortex core deformation

Vansteenkiste, A., Chou, K. W., Weigand, M., Curcic, M., Sackmann, V., Stoll, H., Tyliszczak, T., Woltersdorf, G., Back, C. H., Schütz, G., Van Waeyenberge, B.

{Nature Physics}, 5, pages: 332-334, 2009 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Order\textendashdisorder transition and valence state of ytterbium in YbAuxGa2-x(0.26 \textless\textequalsx \textless\textequals1.31)

Gumeniuk, R., Bischoff, E., Burkhardt, U., Prots, Y., Schnelle, W., Vasylechko, L., Schmidt, M., Kuzma, Y., Grin, Y.

{Journal of Solid State Chemistry}, 182(12):3374-3382, 2009 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Coercivity of ledge-type L10-FePt/Fe nanocomposites with perpendicular magnetization

Goll, D., Breitling, A.

{Applied Physics Letters}, 94, 2009 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Time-resolved X-ray microscopy of nanoparticle aggregates under oscillatory shear

Auernhammer, G. K., Fauth, K., Ullrich, B., Zhao, J., Weigand, M., Vollmer, D.

{Journal of Synchrotron Radiation}, 16, pages: 307-309, 2009 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Micromagnetism of advanced hard magnetic materials

Kronmüller, H., Goll, D.

{International Journal of Materials Research}, 100, pages: 640-651, 2009 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Confinement of MgH2 nanoclusters within nanoporous aerogel scaffold materials

Nielsen, T. K., Manickam, K., Hirscher, M., Besenbacher, F., Jensen, T. R.

{American Chemical Society Nano}, 3(11):3521-3528, 2009 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Possible definition of atom- and bond-resolved contributions to the magnetocrystalline anisotropy energy

Subkow, S., Fähnle, M.

{Physical Review B}, 80, 2009 (article)

mms

DOI [BibTex]


Valero-Cuevas, F., Hoffmann, H., Kurse, M. U., Kutch, J. J., Theodorou, E. A.

IEEE Reviews in Biomedical Engineering – (All authors have equally contributed), (2):110?135, 2009, clmc (article)

Abstract
Computational models of the neuromuscular system hold the potential to allow us to reach a deeper understanding of neuromuscular function and clinical rehabilitation by complementing experimentation. By serving as a means to distill and explore specific hypotheses, computational models emerge from prior experimental data and motivate future experimental work. Here we review computational tools used to understand neuromuscular function including musculoskeletal modeling, machine learning, control theory, and statistical model analysis. We conclude that these tools, when used in combination, have the potential to further our understanding of neuromuscular function by serving as a rigorous means to test scientific hypotheses in ways that complement and leverage experimental data.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Compact models of motor primitive variations for predictible reaching and obstacle avoidance

Stulp, F., Oztop, E., Pastor, P., Beetz, M., Schaal, S.

In IEEE-RAS International Conference on Humanoid Robots (Humanoids 2009), Paris, Dec.7-10, 2009, clmc (inproceedings)

Abstract
over and over again. This regularity allows humans and robots to reuse existing solutions for known recurring tasks. We expect that reusing a set of standard solutions to solve similar tasks will facilitate the design and on-line adaptation of the control systems of robots operating in human environments. In this paper, we derive a set of standard solutions for reaching behavior from human motion data. We also derive stereotypical reaching trajectories for variations of the task, in which obstacles are present. These stereotypical trajectories are then compactly represented with Dynamic Movement Primitives. On the humanoid robot Sarcos CB, this approach leads to reproducible, predictable, and human-like reaching motions.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Human optimization strategies under reward feedback

Hoffmann, H., Theodorou, E., Schaal, S.

In Abstracts of Neural Control of Movement Conference (NCM 2009), Waikoloa, Hawaii, 2009, 2009, clmc (inproceedings)

Abstract
Many hypothesis on human movement generation have been cast into an optimization framework, implying that movements are adapted to optimize a single quantity, like, e.g., jerk, end-point variance, or control cost. However, we still do not understand how humans actually learn when given only a cost or reward feedback at the end of a movement. Such a reinforcement learning setting has been extensively explored theoretically in engineering and computer science, but in human movement control, hardly any experiment studied movement learning under reward feedback. We present experiments probing which computational strategies humans use to optimize a movement under a continuous reward function. We present two experimental paradigms. The first paradigm mimics a ball-hitting task. Subjects (n=12) sat in front of a computer screen and moved a stylus on a tablet towards an unknown target. This target was located on a line that the subjects had to cross. During the movement, visual feedback was suppressed. After the movement, a reward was displayed graphically as a colored bar. As reward, we used a Gaussian function of the distance between the target location and the point of line crossing. We chose such a function since in sensorimotor tasks, the cost or loss function that humans seem to represent is close to an inverted Gaussian function (Koerding and Wolpert 2004). The second paradigm mimics pocket billiards. On the same experimental setup as above, the computer screen displayed a pocket (two bars), a white disk, and a green disk. The goal was to hit with the white disk the green disk (as in a billiard collision), such that the green disk moved into the pocket. Subjects (n=8) manipulated with the stylus the white disk to effectively choose start point and movement direction. Reward feedback was implicitly given as hitting or missing the pocket with the green disk. In both paradigms, subjects increased the average reward over trials. The surprising result was that in these experiments, humans seem to prefer a strategy that uses a reward-weighted average over previous movements instead of gradient ascent. The literature on reinforcement learning is dominated by gradient-ascent methods. However, our computer simulations and theoretical analysis revealed that reward-weighted averaging is the more robust choice given the amount of movement variance observed in humans. Apparently, humans choose an optimization strategy that is suitable for their own movement variance.

am

[BibTex]

[BibTex]


no image
Complex magnetic phase in submonolayer Fe stripes on Pt(977)

Honolka, J., Lee, T. Y., Kuhnke, K., Repetto, D., Sessi, V., Wahl, P., Buchsbaum, A., Varga, P., Gardonio, S., Carbone, C., Krishnakumar, S. R., Gambardella, P., Komelj, M., Singer, R., Fähnle, M., Fauth, K., Schütz, G., Enders, A., Kern, K.

{Physical Review B}, 79, 2009 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Local and nonlocal atomic contributions to unit-cell damping in near-adiabatic collinear magnetization dynamics

Seib, J., Steiauf, D., Fähnle, M.

{Physical Review B}, 79, 2009 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Temperature-dependent critical currents in superconducting YBa2Cu3O7-δand ferromagnetic La2/3Ca1/3MnO3 hybrid structures

Djupmyr, M., Soltan, S., Habermeier, H.-U., Albrecht, J.

{Physical Review B}, 80, 2009 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
High surface area polyHIPEs with hierarchical pore system

Schwab, M. G., Senkovska, I., Rose, M., Klein, N., Koch, M., Pahnke, J., Jonschker, G., Schmitz, B., Hirscher, M., Kaskel, S.

{Soft Matter}, 5, pages: 1055-1059, 2009 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Grain boundary wetting phase transformations in the Zn-Sn and Zn-In systems

Gornakova, A. S., Straumal, B. B., Tsurekawa, S., Chang, L.-S., Nekrasov, A. N.

{Reviews on Advanced Materials Science}, 21(1):18-26, 2009 (article)

mms

[BibTex]

[BibTex]


no image
Magnetization study of nanograined pure and Mn-doped ZnO films: formation of a ferromagnetic grain-boundary foam

Straumal, B. B., Mazilkin, A. A., Protasova, S. G., Myatiev, A. A., Straumal, P. B., Schütz, G., van Aken, P. A., Goering, E., Baretzky, B.

{Physical Review B}, 79, 2009 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
In situ synthesis and hydrogen storage properties of PdNi alloy nanoparticles in an ordered mesoporous carbon template

Campesi, R., Cuevas, F., Leroy, E., Hirscher, M., Gadiou, R., Vix-Guterl, C., Latroche, M.

{Microporous and Mesoporous Materials}, 117, pages: 511-514, 2009 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
On-line learning and modulation of periodic movements with nonlinear dynamical systems

Gams, A., Ijspeert, A., Schaal, S., Lenarčič, J.

Autonomous Robots, 27(1):3-23, 2009, clmc (article)

Abstract
Abstract  The paper presents a two-layered system for (1) learning and encoding a periodic signal without any knowledge on its frequency and waveform, and (2) modulating the learned periodic trajectory in response to external events. The system is used to learn periodic tasks on a humanoid HOAP-2 robot. The first layer of the system is a dynamical system responsible for extracting the fundamental frequency of the input signal, based on adaptive frequency oscillators. The second layer is a dynamical system responsible for learning of the waveform based on a built-in learning algorithm. By combining the two dynamical systems into one system we can rapidly teach new trajectories to robots without any knowledge of the frequency of the demonstration signal. The system extracts and learns only one period of the demonstration signal. Furthermore, the trajectories are robust to perturbations and can be modulated to cope with a dynamic environment. The system is computationally inexpensive, works on-line for any periodic signal, requires no additional signal processing to determine the frequency of the input signal and can be applied in parallel to multiple dimensions. Additionally, it can adapt to changes in frequency and shape, e.g. to non-stationary signals, such as hand-generated signals and human demonstrations.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Local dimensionality reduction for non-parametric regression

Hoffman, H., Schaal, S., Vijayakumar, S.

Neural Processing Letters, 2009, clmc (article)

Abstract
Locally-weighted regression is a computationally-efficient technique for non-linear regression. However, for high-dimensional data, this technique becomes numerically brittle and computationally too expensive if many local models need to be maintained simultaneously. Thus, local linear dimensionality reduction combined with locally-weighted regression seems to be a promising solution. In this context, we review linear dimensionality-reduction methods, compare their performance on nonparametric locally-linear regression, and discuss their ability to extend to incremental learning. The considered methods belong to the following three groups: (1) reducing dimensionality only on the input data, (2) modeling the joint input-output data distribution, and (3) optimizing the correlation between projection directions and output data. Group 1 contains principal component regression (PCR); group 2 contains principal component analysis (PCA) in joint input and output space, factor analysis, and probabilistic PCA; and group 3 contains reduced rank regression (RRR) and partial least squares (PLS) regression. Among the tested methods, only group 3 managed to achieve robust performance even for a non-optimal number of components (factors or projection directions). In contrast, group 1 and 2 failed for fewer components since these methods rely on the correct estimate of the true intrinsic dimensionality. In group 3, PLS is the only method for which a computationally-efficient incremental implementation exists. Thus, PLS appears to be ideally suited as a building block for a locally-weighted regressor in which projection directions are incrementally added on the fly.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Mit Röntgenblitzen zu neuen Erkenntnissen

Hedderich, R., Weigand, M., Baretzky, B.

{Nanotechnik - Molek\"ule Materialien Mikrosysteme}, (6 (Beilage zu Photonik 41. 2009)), 2009 (article)

mms

[BibTex]

[BibTex]


no image
Second-order faceting-roughening of the tilt grain boundary in zinc

Straumal, B. B., Gornakova, A. S., Sursaeva, V. G., Yashnikov, V. P.

{International Journal of Materials Research}, 100(4):525-529, 2009 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Improvement of interface structure and magnetic properties of Co on Si (100) by surfactant (Sb) mediated growth

Dash, S. P., Goll, D., Carstanjen, H. D.

{Applied Physics A}, 97(3):651-656, 2009 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Effect of severe plastic deformation on the coercivity of Co-Cu alloys

Straumal, B. B., Protasova, S. G., Mazilkin, A. A., Baretzky, B., Goll, D., Gunderov, D. V., Valiev, R. Z.

{Philosophical Magazine Letters}, 89(10):649-654, 2009 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Magnetic properties of cobalt-covered MgB2 films

Treiber, S., Stuhlhofer, B., Habermeier, H.-U., Albrecht, J.

{Superconductor Science and Technology}, 22, 2009 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Reconstruction of historic alloys for pipe organs brings true Baroque music back to life

Baretzky, B., Friesel, M., Straumal, B.

{Japan Organist}, 36, pages: 29-38, 2009 (article)

mms

[BibTex]

[BibTex]


no image
Exchange-coupled L10-FePt/Fe composite patterns with perpendicular magnetization

Breitling, A., Bublat, T., Goll, D.

{Physica Status Solidi - Rapid Research Letters}, 3(5):130-132, 2009 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Proton NMR studies of the NaAlH4 structure

Valiente-Banuet, L. E., Majer, G., Müller, K.

{Journal of Magnetic Resonance}, 200, pages: 280-284, 2009 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Learning and generalization of motor skills by learning from demonstration

Pastor, P., Hoffmann, H., Asfour, T., Schaal, S.

In International Conference on Robotics and Automation (ICRA2009), Kobe, Japan, May 12-19, 2009, 2009, clmc (inproceedings)

Abstract
We provide a general approach for learning robotic motor skills from human demonstration. To represent an observed movement, a non-linear differential equation is learned such that it reproduces this movement. Based on this representation, we build a library of movements by labeling each recorded movement according to task and context (e.g., grasping, placing, and releasing). Our differential equation is formulated such that generalization can be achieved simply by adapting a start and a goal parameter in the equation to the desired position values of a movement. For object manipulation, we present how our framework extends to the control of gripper orientation and finger position. The feasibility of our approach is demonstrated in simulation as well as on a real robot. The robot learned a pick-and-place operation and a water-serving task and could generalize these tasks to novel situations.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Compliant quadruped locomotion over rough terrain

Buchli, J., Kalakrishnan, M., Mistry, M., Pastor, P., Schaal, S.

In Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on, pages: 814-820, 2009, clmc (inproceedings)

Abstract
Many critical elements for statically stable walking for legged robots have been known for a long time, including stability criteria based on support polygons, good foothold selection, recovery strategies to name a few. All these criteria have to be accounted for in the planning as well as the control phase. Most legged robots usually employ high gain position control, which means that it is crucially important that the planned reference trajectories are a good match for the actual terrain, and that tracking is accurate. Such an approach leads to conservative controllers, i.e. relatively low speed, ground speed matching, etc. Not surprisingly such controllers are not very robust - they are not suited for the real world use outside of the laboratory where the knowledge of the world is limited and error prone. Thus, to achieve robust robotic locomotion in the archetypical domain of legged systems, namely complex rough terrain, where the size of the obstacles are in the order of leg length, additional elements are required. A possible solution to improve the robustness of legged locomotion is to maximize the compliance of the controller. While compliance is trivially achieved by reduced feedback gains, for terrain requiring precise foot placement (e.g. climbing rocks, walking over pegs or cracks) compliance cannot be introduced at the cost of inferior tracking. Thus, model-based control and - in contrast to passive dynamic walkers - active balance control is required. To achieve these objectives, in this paper we add two crucial elements to legged locomotion, i.e., floating-base inverse dynamics control and predictive force control, and we show that these elements increase robustness in face of unknown and unanticipated perturbations (e.g. obstacles). Furthermore, we introduce a novel line-based COG trajectory planner, which yields a simpler algorithm than traditional polygon based methods and creates the appropriate input to our control system.We show results from bot- h simulation and real world of a robotic dog walking over non-perceived obstacles and rocky terrain. The results prove the effectivity of the inverse dynamics/force controller. The presented results show that we have all elements needed for robust all-terrain locomotion, which should also generalize to other legged systems, e.g., humanoid robots.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Magnetism of FePt surface alloys

Honolka, J., Lee, T. Y., Kuhnke, K., Enders, A., Skomski, R., Bornemann, S., Mankovsky, S., Minár, J., Staunton, J., Ebert, H., Hessler, M., Fauth, K., Schütz, G., Buchsbaum, A., Schmid, M., Varga, P., Kern, K.

{Physical Review Letters}, 102(6), 2009 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Enhanced 95Zr diffusion in grain boundaries of nano-crystalline ZrO2 \mbox⋅ 9.5 mol\textpercent Y2O3

Drings, H., Brossmann, U., Carstanjen, H. D., Szökefalvi-Nagy, A., Noll, C., Schaefer, H.-E.

{Physica Status Solidi (A)}, 206(1):54-58, 2009 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Magnetism of nanostructured materials for advanced magnetic recording

Goll, D.

{International Journal of Materials Research}, 100, pages: 652-662, 2009 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Vortex core switching by coherent excitation with single in-plane magnetic field pulses

Weigand, M., van Waeyenberge, B., Vansteenkiste, A., Curcic, M., Sackmann, V., Stoll, H., Tyliszczak, T., Kaznatcheev, K., Bertwistle, D., Woltersdorf, G., Back, C. H., Schütz, G.

{Physical Review Letters}, 102, 2009 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Increase of Mn solubility with decreasing grain size in ZnO

Straumal, B., Baretzky, B., Mazilkin, A., Protasova, S., Myatiev, A., Straumal, P.

{Journal of the European Ceramic Society}, 29(10):1963-1970, 2009 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Fe-C nanograined alloys obtained by high-pressure torsion: Structure and magnetic properties

Straumal, B. B., Mazilkin, A. A., Protasova, S. G., Dobatkin, S. V., Rodin, A. O., Baretzky, B., Goll, D., Schütz, G.

{Materials Science and Engineering A}, 503, pages: 185-189, 2009 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Chiral symmetry breaking of magnetic vortices by sample roughness

Vansteenkiste, A., Weigand, M., Curcic, M., Stoll, H., Schütz, G., Van Waeyenberge, B.

{New Journal of Physics}, 11, 2009 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Extended s-d model for magnetization dynamics of strongly noncollinear configurations

De Angeli, L., Steiauf, D., Singer, R., Köberle, I., Dietermann, F., Fähnle, M.

{Physical Review B}, 79, 2009 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Incorporating Muscle Activation-Contraction dynamics to an optimal control framework for finger movements

Theodorou, Evangelos A., Valero-Cuevas, Francisco J.

Abstracts of Neural Control of Movement Conference (NCM 2009), 2009, clmc (article)

Abstract
Recent experimental and theoretical work [1] investigated the neural control of contact transition between motion and force during tapping with the index finger as a nonlinear optimization problem. Such transitions from motion to well-directed contact force are a fundamental part of dexterous manipulation. There are 3 alternative hypotheses of how this transition could be accomplished by the nervous system as a function of changes in direction and magnitude of the torque vector controlling the finger. These hypotheses are 1) an initial change in direction with a subsequent change in magnitude of the torque vector; 2) an initial change in magnitude with a subsequent directional change of the torque vector; and 3) a simultaneous and proportionally equal change of both direction and magnitude of the torque vector. Experimental work in [2] shows that the nervous system selects the first strategy, and in [1] we suggest that this may in fact be the optimal strategy. In [4] the framework of Iterative Linear Quadratic Optimal Regulator (ILQR) was extended to incorporate motion and force control. However, our prior simulation work assumed direct and instantaneous control of joint torques, which ignores the known delays and filtering properties of skeletal muscle. In this study, we implement an ILQR controller for a more biologically plausible biomechanical model of the index finger than [4], and add activation-contraction dynamics to the system to simulate muscle function. The planar biomechanical model includes the kinematics of the 3 joints while the applied torques are driven by activation?contraction dynamics with biologically plausible time constants [3]. In agreement with our experimental work [2], the task is to, within 500 ms, move the finger from a given resting configuration to target configuration with a desired terminal velocity. ILQR does not only stabilize the finger dynamics according to the objective function, but it also generates smooth joint space trajectories with minimal tuning and without an a-priori initial control policy (which is difficult to find for highly dimensional biomechanical systems). Furthemore, the use of this optimal control framework and the addition of activation-contraction dynamics considers the full nonlinear dynamics of the index finger and produces a sequence of postures which are compatible with experimental motion data [2]. These simulations combined with prior experimental results suggest that optimal control is a strong candidate for the generation of finger movements prior to abrupt motion-to-force transitions. This work is funded in part by grants NIH R01 0505520 and NSF EFRI-0836042 to Dr. Francisco J. Valero- Cuevas 1 Venkadesan M, Valero-Cuevas FJ. 
Effects of neuromuscular lags on controlling contact transitions. 
Philosophical Transactions of the Royal Society A: 2008. 2 Venkadesan M, Valero-Cuevas FJ. 
Neural Control of Motion-to-Force Transitions with the Fingertip. 
J. Neurosci., Feb 2008; 28: 1366 - 1373; 3 Zajac. Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Crit Rev Biomed Eng, 17 4. Weiwei Li., Francisco Valero Cuevas: ?Linear Quadratic Optimal Control of Contact Transition with Fingertip ? ACC 2009

am

PDF [BibTex]

PDF [BibTex]


no image
Inertial parameter estimation of floating-base humanoid systems using partial force sensing

Mistry, M., Schaal, S., Yamane, K.

In IEEE-RAS International Conference on Humanoid Robots (Humanoids 2009), Paris, Dec.7-10, 2009, clmc (inproceedings)

Abstract
Recently, several controllers have been proposed for humanoid robots which rely on full-body dynamic models. The estimation of inertial parameters from data is a critical component for obtaining accurate models for control. However, floating base systems, such as humanoid robots, incur added challenges to this task (e.g. contact forces must be measured, contact states can change, etc.) In this work, we outline a theoretical framework for whole body inertial parameter estimation, including the unactuated floating base. Using a least squares minimization approach, conducted within the nullspace of unmeasured degrees of freedom, we are able to use a partial force sensor set for full-body estimation, e.g. using only joint torque sensors, allowing for estimation when contact force measurement is unavailable or unreliable (e.g. due to slipping, rolling contacts, etc.). We also propose how to determine the theoretical minimum force sensor set for full body estimation, and discuss the practical limitations of doing so.

am

link (url) [BibTex]

link (url) [BibTex]


no image
On-line learning and modulation of periodic movements with nonlinear dynamical systems

Gams, A., Ijspeert, A., Schaal, S., Lenarčič, J.

Autonomous Robots, 27(1):3-23, 2009, clmc (article)

Abstract
Abstract  The paper presents a two-layered system for (1) learning and encoding a periodic signal without any knowledge on its frequency and waveform, and (2) modulating the learned periodic trajectory in response to external events. The system is used to learn periodic tasks on a humanoid HOAP-2 robot. The first layer of the system is a dynamical system responsible for extracting the fundamental frequency of the input signal, based on adaptive frequency oscillators. The second layer is a dynamical system responsible for learning of the waveform based on a built-in learning algorithm. By combining the two dynamical systems into one system we can rapidly teach new trajectories to robots without any knowledge of the frequency of the demonstration signal. The system extracts and learns only one period of the demonstration signal. Furthermore, the trajectories are robust to perturbations and can be modulated to cope with a dynamic environment. The system is computationally inexpensive, works on-line for any periodic signal, requires no additional signal processing to determine the frequency of the input signal and can be applied in parallel to multiple dimensions. Additionally, it can adapt to changes in frequency and shape, e.g. to non-stationary signals, such as hand-generated signals and human demonstrations.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Superconducting phase formation in random neck syntheses: a study of the Y-Ba-Cu-O system by magneto-optics and magnetometry

Willems, J. B., Albrecht, J., Landau, I. L., Hulliger, J.

{Superconductor Science and Technology}, 22, 2009 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Determination of spin moments from magnetic EXAFS

Popescu, V., Gü\ssmann, M., Fähnle, M., Schütz, G.

{Physical Review B}, 79, 2009 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Linewidth of ferromagnetic resonance for systems with anisotropic damping

Seib, J., Steiauf, D., Fähnle, M.

{Physical Review B}, 79, 2009 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Structural and magnetic deconvolution of FePt/FeOx-nanoparticles using x-ray magnetic circular dichroism

Nolle, D., Goering, E., Tietze, T., Schütz, G., Figuerola, A., Manna, L.

{New Journal of Physics}, 11, 2009 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Magnetic imaging with femtosecond temporal resolution

Li, J., Lee, M.-S., He, W., Redeker, B., Remhof, A., Amaladass, E., Hassel, C., Eimüller, T.

{Review of Scientific Instruments}, 80(7), 2009 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Elliott-Yafet mechanism and the discussion of femtosecond magnetization dynamics

Steiauf, D., Fähnle, M.

{Physical Review B}, 79, 2009 (article)

mms

DOI [BibTex]

DOI [BibTex]