Header logo is


2015


Thumb xl publications toc
Experimental investigation of optimal adhesion of mushroomlike elastomer microfibrillar adhesives

Marvi, H., Song, S., Sitti, M.

Langmuir, 31(37):10119-10124, American Chemical Society, August 2015 (article)

Abstract
Optimal fiber designs for the maximal pull-off force have been indispensable for increasing the attachment performance of recently introduced gecko-inspired reversible micro/nanofibrillar adhesives. There are several theoretical studies on such optimal designs; however, due to the lack of three-dimensional (3D) fabrication techniques that can fabricate such optimal designs in 3D, there have not been many experimental investigations on this challenge. In this study, we benefitted from recent advances in two-photon lithography techniques to fabricate mushroomlike polyurethane elastomer fibers with different aspect ratios of tip to stalk diameter (β) and tip wedge angles (θ) to investigate the effect of these two parameters on the pull-off force. We found similar trends to those predicted theoretically. We found that β has an impact on the slope of the force-displacement curve while both β and θ play a role in the stress distribution and crack propagation. We found that these effects are coupled and the optimal set of parameters also depends on the fiber material. This is the first experimental verification of such optimal designs proposed for mushroomlike microfibers. This experimental approach could be used to evaluate a wide range of complex microstructured adhesive designs suggested in the literature and optimize them.

pi

DOI [BibTex]

2015


DOI [BibTex]


Thumb xl publications toc
pH-taxis of biohybrid microsystems

Zhuang, J., Carlsen, R. W., Sitti, M.

Scientific reports, 5, Nature Publishing Group, June 2015 (article)

Abstract
The last decade has seen an increasing number of studies developing bacteria and other cell-integrated biohybrid microsystems. However, the highly stochastic motion of these microsystems severely limits their potential use. Here, we present a method that exploits the pH sensing of flagellated bacteria to realize robust drift control of multi-bacteria propelled microrobots. Under three specifically configured pH gradients, we demonstrate that the microrobots exhibit both unidirectional and bidirectional pH-tactic behaviors, which are also observed in free-swimming bacteria. From trajectory analysis, we find that the swimming direction and speed biases are two major factors that contribute to their tactic drift motion. The motion analysis of microrobots also sheds light on the propulsion dynamics of the flagellated bacteria as bioactuators. It is expected that similar driving mechanisms are shared among pH-taxis, chemotaxis, and thermotaxis. By identifying the mechanism that drives the tactic behavior of bacteria-propelled microsystems, this study opens up an avenue towards improving the control of biohybrid microsystems. Furthermore, assuming that it is possible to tune the preferred pH of bioactuators by genetic engineering, these biohybrid microsystems could potentially be applied to sense the pH gradient induced by cancerous cells in stagnant fluids inside human body and realize targeted drug delivery.

pi

DOI Project Page [BibTex]

DOI Project Page [BibTex]


Thumb xl 1 s2.0 s0141635915000938 main
Structural optimization for flexure-based parallel mechanisms–Towards achieving optimal dynamic and stiffness properties

Lum, G. Z., Teo, T. J., Yeo, S. H., Yang, G., Sitti, M.

Precision Engineering, 42, pages: 195-207, Elsevier, May 2015 (article)

Abstract
Flexure-based parallel mechanisms (FPMs) are a type of compliant mechanisms that consist of a rigid end-effector that is articulated by several parallel, flexible limbs (a.k.a. sub-chains). Existing design methods can enhance the FPMs’ dynamic and stiffness properties by conducting a size optimization on their sub-chains. A similar optimization process, however, was not performed for their sub-chains’ topology, and this may severely limit the benefits of a size optimization. Thus, this paper proposes to use a structural optimization approach to synthesize and optimize the topology, shape and size of the FPMs’ sub-chains. The benefits of this approach are demonstrated via the design and development of a planar X − Y − θz FPM. A prototype of this FPM was evaluated experimentally to have a large workspace of 1.2 mm × 1.2 mm × 6°, a fundamental natural frequency of 102 Hz, and stiffness ratios that are greater than 120. The achieved properties show significant improvement over existing 3-degrees-of-freedom compliant mechanisms that can deflect more than 0.5 mm and 0.5°. These compliant mechanisms typically have stiffness ratios that are less than 60 and a fundamental natural frequency that is less than 45 Hz.

pi

DOI [BibTex]

DOI [BibTex]


Thumb xl 1 s2.0 s0142961215003683 main
Controlled surface topography regulates collective 3D migration by epithelial–mesenchymal composite embryonic tissues

Song, J., Shawky, J. H., Kim, Y., Hazar, M., LeDuc, P. R., Sitti, M., Davidson, L. A.

Biomaterials, 58, pages: 1-9, Elsevier, April 2015 (article)

Abstract
Cells in tissues encounter a range of physical cues as they migrate. Probing single cell and collective migratory responses to physically defined three-dimensional (3D) microenvironments and the factors that modulate those responses are critical to understanding how tissue migration is regulated during development, regeneration, and cancer. One key physical factor that regulates cell migration is topography. Most studies on surface topography and cell mechanics have been carried out with single migratory cells, yet little is known about the spreading and motility response of 3D complex multi-cellular tissues to topographical cues. Here, we examine the response to complex topographical cues of microsurgically isolated tissue explants composed of epithelial and mesenchymal cell layers from naturally 3D organized embryos of the aquatic frog Xenopus laevis. We control topography using fabricated micropost arrays (MPAs) and investigate the collective 3D migration of these multi-cellular systems in these MPAs. We find that the topography regulates both collective and individual cell migration and that dense MPAs reduce but do not eliminate tissue spreading. By modulating cell size through the cell cycle inhibitor Mitomycin C or the spacing of the MPAs we uncover how 3D topographical cues disrupt collective cell migration. We find surface topography can direct both single cell motility and tissue spreading, altering tissue-scale processes that enable efficient conversion of single cell motility into collective movement.

pi

DOI [BibTex]

DOI [BibTex]


Thumb xl publications toc
Transfer Printing of Metallic Microstructures on Adhesion-Promoting Hydrogel Substrates

Wu, H., Sariola, V., Zhu, C., Zhao, J., Sitti, M., Bettinger, C. J.

Advanced Materials, 27(22):3398-3404, April 2015 (article)

Abstract
Fabrication schemes that integrate inorganic microstructures with hydrogel substrates are essential for advancing flexible electronics. A transfer printing process that is made possible through the design and synthesis of adhesion-promoting hydrogels as target substrates is reported. This fabrication technique may advance ultracompliant electronics by melding microfabricated structures with swollen hydrogel substrates.

pi

DOI [BibTex]

DOI [BibTex]


Thumb xl publications toc
Biomedical applications of untethered mobile milli/microrobots

Sitti, M., Ceylan, H., Hu, W., Giltinan, J., Turan, M., Yim, S., Diller, E.

Proceedings of the IEEE, 103(2):205-224, IEEE, March 2015 (article)

Abstract
Untethered robots miniaturized to the length scale of millimeter and below attract growing attention for the prospect of transforming many aspects of health care and bioengineering. As the robot size goes down to the order of a single cell, previously inaccessible body sites would become available for high-resolution in situ and in vivo manipulations. This unprecedented direct access would enable an extensive range of minimally invasive medical operations. Here, we provide a comprehensive review of the current advances in biomedical untethered mobile milli/microrobots. We put a special emphasis on the potential impacts of biomedical microrobots in the near future. Finally, we discuss the existing challenges and emerging concepts associated with designing such a miniaturized robot for operation inside a biological environment for biomedical applications.

pi

DOI [BibTex]

DOI [BibTex]


Thumb xl publications toc
Collective 3D Migration of Embryonic Epithelial Mesenchymal Composite Tissues are Regulated by Surface Topology

Song, J., Shawky, J., Kim, Y. T., Hazar, M., Sitti, M., LeDuc, P. R., Davidson, L. A.

Biophysical Journal, 108(2):455a, Elsevier, January 2015 (article)

Abstract
Cells in tissues encounter a range of physical cues as they migrate. Probing single cell and collective migratory responses to physically defined three-dimensional (3D) microenvironments and the factors that modulate those responses are critical to understanding how tissue migration is regulated during development, regeneration, and cancer. One key physical factor that regulates cell migration is topology. Most studies on surface topology and cell mechanics have been carried out with single migratory cells, yet little is known about the spreading and motility response of 3D complex multicellular tissues to topological cues. Here, we examine the behaviors of microsurgically isolated tissue explants composed of epithelial and mesenchymal cell layers from naturally 3D organized embryos of the aquatic frog Xenopus laevis to complex topological cues. We control topology using fabricated micropost arrays (MPAs) with different diameters (e.g., different spacing gaps) and investigate the collective 3D migration of these multicellular systems in these MPAs. Our topographical controlled approach for cellular application enables us to achieve a high degree of control over micropost positioning and geometry via simple, accurate, and repeatable microfabrication processes. We find that the topology regulates both collective and individual cell migration and that dense MPAs reduce but do not eliminate tissue spreading. By modulating cell size through the cell cycle inhibitor Mitomycin C or the spacing within MPAs we discover a role for topology in disrupting collective enhancement of cell migration. We find 3D topological cues can direct both single cell motility and tissue spreading, altering tissue-scale processes that enable efficient conversion of single cell motility into collective movement.

pi

DOI [BibTex]

DOI [BibTex]


Thumb xl publications toc
Three-dimensional heterogeneous assembly of coded microgels using an untethered mobile microgripper

Chung, S. E., Dong, X., Sitti, M.

Lab on a Chip, 15(7):1667-1676, Royal Society of Chemistry, January 2015 (article)

Abstract
Three-dimensional (3D) heterogeneous assembly of coded microgels in enclosed aquatic environments is demonstrated using a remotely actuated and controlled magnetic microgripper by a customized electromagnetic coil system. The microgripper uses different ‘stick–slip’ and ‘rolling’ locomotion in 2D and also levitation in 3D by magnetic gradient-based pulling force. This enables the microrobot to precisely manipulate each microgel by controlling its position and orientation in all x–y–z directions. Our microrobotic assembly method broke the barrier of limitation on the number of assembled microgel layers, because it enabled precise 3D levitation of the microgripper. We used the gripper to assemble microgels that had been coded with different colours and shapes onto prefabricated polymeric microposts. This eliminates the need for extra secondary cross-linking to fix the final construct. We demonstrated assembly of microgels on a single micropost up to ten layers. By increasing the number and changing the distribution of the posts, complex heterogeneous microsystems were possible to construct in 3D.

pi

DOI Project Page [BibTex]

DOI Project Page [BibTex]


Thumb xl publications toc
Integrating mechanism synthesis and topological optimization technique for stiffness-oriented design of a three degrees-of-freedom flexure-based parallel mechanism

Lum, G. Z., Teo, T. J., Yang, G., Yeo, S. H., Sitti, M.

Precision Engineering, 39, pages: 125-133, Elsevier, January 2015 (article)

Abstract
This paper introduces a new design approach to synthesize multiple degrees-of-freedom (DOF) flexure-based parallel mechanism (FPM). Termed as an integrated design approach, it is a systematic design methodology, which integrates both classical mechanism synthesis and modern topology optimization technique, to deliver an optimized multi-DOF FPM. This design approach is separated into two levels. At sub-chain level, a novel topology optimization technique, which uses the classical linkage mechanisms as DNA seeds, is used to synthesize the compliant joints or limbs. At configuration level, the optimal compliant joints are used to form the parallel limbs of the multi-DOF FPM and another stage of optimization was conducted to determine the optimal space distribution between these compliant joints so as to generate a multi-DOF FPM with optimized stiffness characteristic. In this paper, the design of a 3-DOF planar motion FPM was used to demonstrate the effectiveness and accuracy of this proposed design approach.

pi

DOI [BibTex]


Thumb xl publications toc
Actively controlled fibrillar friction surfaces

Marvi, H, Han, Y, Sitti, M

Applied Physics Letters, 106(5):051602, AIP Publishing, January 2015 (article)

Abstract
In this letter, we propose a technique by which we can actively adjust frictional properties of elastic fibrillar structures in different directions. Using a mesh attached to a two degree-of-freedom linear stage, we controlled the active length and the tilt angle of fibers, independently. Thus, we were able to achieve desired levels of friction forces in different directions and significantly improve passive friction anisotropies observed in the same fiber arrays. The proposed technique would allow us to readily control the friction anisotropy and the friction magnitude of fibrillar structures in any planar direction.

pi

DOI [BibTex]

DOI [BibTex]


no image
Active Reward Learning with a Novel Acquisition Function

Daniel, C., Kroemer, O., Viering, M., Metz, J., Peters, J.

Autonomous Robots, 39(3):389-405, 2015 (article)

am ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Learning Movement Primitive Attractor Goals and Sequential Skills from Kinesthetic Demonstrations

Manschitz, S., Kober, J., Gienger, M., Peters, J.

Robotics and Autonomous Systems, 74, Part A, pages: 97-107, 2015 (article)

am ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Bayesian Optimization for Learning Gaits under Uncertainty

Calandra, R., Seyfarth, A., Peters, J., Deisenroth, M.

Annals of Mathematics and Artificial Intelligence, pages: 1-19, 2015 (article)

am ei

DOI [BibTex]

DOI [BibTex]

2010


no image
Policy learning algorithmis for motor learning (Algorithmen zum automatischen Erlernen von Motorfähigkigkeiten)

Peters, J., Kober, J., Schaal, S.

Automatisierungstechnik, 58(12):688-694, 2010, clmc (article)

Abstract
Robot learning methods which allow au- tonomous robots to adapt to novel situations have been a long standing vision of robotics, artificial intelligence, and cognitive sciences. However, to date, learning techniques have yet to ful- fill this promise as only few methods manage to scale into the high-dimensional domains of manipulator robotics, or even the new upcoming trend of humanoid robotics. If possible, scaling was usually only achieved in precisely pre-structured domains. In this paper, we investigate the ingredients for a general ap- proach policy learning with the goal of an application to motor skill refinement in order to get one step closer towards human- like performance. For doing so, we study two major components for such an approach, i. e., firstly, we study policy learning algo- rithms which can be applied in the general setting of motor skill learning, and, secondly, we study a theoretically well-founded general approach to representing the required control structu- res for task representation and execution.

am

link (url) [BibTex]


no image
Gait planning based on kinematics for a quadruped gecko model with redundancy

Son, D., Jeon, D., Nam, W. C., Chang, D., Seo, T., Kim, J.

Robotics and Autonomous Systems, 58, 2010 (article)

pi

[BibTex]

[BibTex]


no image
Flat dry elastomer adhesives as attachment materials for climbing robots

Unver, O., Sitti, M.

IEEE transactions on robotics, 26(1):131-141, IEEE, 2010 (article)

pi

[BibTex]

[BibTex]


no image
A Bayesian approach to nonlinear parameter identification for rigid-body dynamics

Ting, J., DSouza, A., Schaal, S.

Neural Networks, 2010, clmc (article)

Abstract
For complex robots such as humanoids, model-based control is highly beneficial for accurate tracking while keeping negative feedback gains low for compliance. However, in such multi degree-of-freedom lightweight systems, conventional identification of rigid body dynamics models using CAD data and actuator models is inaccurate due to unknown nonlinear robot dynamic effects. An alternative method is data-driven parameter estimation, but significant noise in measured and inferred variables affects it adversely. Moreover, standard estimation procedures may give physically inconsistent results due to unmodeled nonlinearities or insufficiently rich data. This paper addresses these problems, proposing a Bayesian system identification technique for linear or piecewise linear systems. Inspired by Factor Analysis regression, we develop a computationally efficient variational Bayesian regression algorithm that is robust to ill-conditioned data, automatically detects relevant features, and identifies input and output noise. We evaluate our approach on rigid body parameter estimation for various robotic systems, achieving an error of up to three times lower than other state-of-the-art machine learning methods.

am

link (url) [BibTex]


no image
A first optimal control solution for a complex, nonlinear, tendon driven neuromuscular finger model

Theodorou, E. A., Todorov, E., Valero-Cuevas, F.

Proceedings of the ASME 2010 Summer Bioengineering Conference August 30-September 2, 2010, Naples, Florida, USA, 2010, clmc (article)

Abstract
In this work we present the first constrained stochastic op- timal feedback controller applied to a fully nonlinear, tendon driven index finger model. Our model also takes into account an extensor mechanism, and muscle force-length and force-velocity properties. We show this feedback controller is robust to noise and perturbations to the dynamics, while successfully handling the nonlinearities and high dimensionality of the system. By ex- tending prior methods, we are able to approximate physiological realism by ensuring positivity of neural commands and tendon tensions at all timesthus can, for the first time, use the optimal control framework to predict biologically plausible tendon tensions for a nonlinear neuromuscular finger model. METHODS 1 Muscle Model The rigid-body triple pendulum finger model with slightly viscous joints is actuated by Hill-type muscle models. Joint torques are generated by the seven muscles of the index fin-

am

PDF [BibTex]

PDF [BibTex]


no image
An experimental analysis of elliptical adhesive contact

Sümer, B., Onal, C. D., Aksak, B., Sitti, M.

Journal of Applied Physics, 107(11):113512, AIP, 2010 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Efficient learning and feature detection in high dimensional regression

Ting, J., D’Souza, A., Vijayakumar, S., Schaal, S.

Neural Computation, 22, pages: 831-886, 2010, clmc (article)

Abstract
We present a novel algorithm for efficient learning and feature selection in high- dimensional regression problems. We arrive at this model through a modification of the standard regression model, enabling us to derive a probabilistic version of the well-known statistical regression technique of backfitting. Using the Expectation- Maximization algorithm, along with variational approximation methods to overcome intractability, we extend our algorithm to include automatic relevance detection of the input features. This Variational Bayesian Least Squares (VBLS) approach retains its simplicity as a linear model, but offers a novel statistically robust â??black- boxâ? approach to generalized linear regression with high-dimensional inputs. It can be easily extended to nonlinear regression and classification problems. In particular, we derive the framework of sparse Bayesian learning, e.g., the Relevance Vector Machine, with VBLS at its core, offering significant computational and robustness advantages for this class of methods. We evaluate our algorithm on synthetic and neurophysiological data sets, as well as on standard regression and classification benchmark data sets, comparing it with other competitive statistical approaches and demonstrating its suitability as a drop-in replacement for other generalized linear regression techniques.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Stochastic Differential Dynamic Programming

Theodorou, E., Tassa, Y., Todorov, E.

In the proceedings of American Control Conference (ACC 2010) , 2010, clmc (article)

Abstract
We present a generalization of the classic Differential Dynamic Programming algorithm. We assume the existence of state- and control-dependent process noise, and proceed to derive the second-order expansion of the cost-to-go. Despite having quartic and cubic terms in the initial expression, we show that these vanish, leaving us with the same quadratic structure as standard DDP.

am

PDF [BibTex]

PDF [BibTex]


no image
Enhanced wet adhesion and shear of elastomeric micro-fiber arrays with mushroom tip geometry and a photopolymerized p (DMA-co-MEA) tip coating

Glass, P., Chung, H., Washburn, N. R., Sitti, M.

Langmuir, 26(22):17357-17362, American Chemical Society, 2010 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Learning control in robotics – trajectory-based opitimal control techniques

Schaal, S., Atkeson, C. G.

Robotics and Automation Magazine, 17(2):20-29, 2010, clmc (article)

Abstract
In a not too distant future, robots will be a natural part of daily life in human society, providing assistance in many areas ranging from clinical applications, education and care giving, to normal household environments [1]. It is hard to imagine that all possible tasks can be preprogrammed in such robots. Robots need to be able to learn, either by themselves or with the help of human supervision. Additionally, wear and tear on robots in daily use needs to be automatically compensated for, which requires a form of continuous self-calibration, another form of learning. Finally, robots need to react to stochastic and dynamic environments, i.e., they need to learn how to optimally adapt to uncertainty and unforeseen changes. Robot learning is going to be a key ingredient for the future of autonomous robots. While robot learning covers a rather large field, from learning to perceive, to plan, to make decisions, etc., we will focus this review on topics of learning control, in particular, as it is concerned with learning control in simulated or actual physical robots. In general, learning control refers to the process of acquiring a control strategy for a particular control system and a particular task by trial and error. Learning control is usually distinguished from adaptive control [2] in that the learning system can have rather general optimization objectivesâ??not just, e.g., minimal tracking errorâ??and is permitted to fail during the process of learning, while adaptive control emphasizes fast convergence without failure. Thus, learning control resembles the way that humans and animals acquire new movement strategies, while adaptive control is a special case of learning control that fulfills stringent performance constraints, e.g., as needed in life-critical systems like airplanes. Learning control has been an active topic of research for at least three decades. However, given the lack of working robots that actually use learning components, more work needs to be done before robot learning will make it beyond the laboratory environment. This article will survey some ongoing and past activities in robot learning to assess where the field stands and where it is going. We will largely focus on nonwheeled robots and less on topics of state estimation, as typically explored in wheeled robots [3]â??6], and we emphasize learning in continuous state-action spaces rather than discrete state-action spaces [7], [8]. We will illustrate the different topics of robot learning with examples from our own research with anthropomorphic and humanoid robots.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Learning, planning, and control for quadruped locomotion over challenging terrain

Kalakrishnan, M., Buchli, J., Pastor, P., Mistry, M., Schaal, S.

International Journal of Robotics Research, 30(2):236-258, 2010, clmc (article)

Abstract
We present a control architecture for fast quadruped locomotion over rough terrain. We approach the problem by decomposing it into many sub-systems, in which we apply state-of-the-art learning, planning, optimization, and control techniques to achieve robust, fast locomotion. Unique features of our control strategy include: (1) a system that learns optimal foothold choices from expert demonstration using terrain templates, (2) a body trajectory optimizer based on the Zero- Moment Point (ZMP) stability criterion, and (3) a floating-base inverse dynamics controller that, in conjunction with force control, allows for robust, compliant locomotion over unperceived obstacles. We evaluate the performance of our controller by testing it on the LittleDog quadruped robot, over a wide variety of rough terrains of varying difficulty levels. The terrain that the robot was tested on includes rocks, logs, steps, barriers, and gaps, with obstacle sizes up to the leg length of the robot. We demonstrate the generalization ability of this controller by presenting results from testing performed by an independent external test team on terrain that has never been shown to us.

am

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Teleoperated 3-D force feedback from the nanoscale with an atomic force microscope

Onal, C. D., Sitti, M.

IEEE Transactions on nanotechnology, 9(1):46-54, IEEE, 2010 (article)

pi

[BibTex]

[BibTex]


no image
Roll and pitch motion analysis of a biologically inspired quadruped water runner robot

Park, H. S., Floyd, S., Sitti, M.

The International Journal of Robotics Research, 29(10):1281-1297, SAGE Publications Sage UK: London, England, 2010 (article)

pi

[BibTex]

[BibTex]


no image
Microstructured elastomeric surfaces with reversible adhesion and examples of their use in deterministic assembly by transfer printing

Kim, Seok, Wu, Jian, Carlson, Andrew, Jin, Sung Hun, Kovalsky, Anton, Glass, Paul, Liu, Zhuangjian, Ahmed, Numair, Elgan, Steven L, Chen, Weiqiu, others

Proceedings of the National Academy of Sciences, 107(40):17095-17100, National Acad Sciences, 2010 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Tankbot: A palm-size, tank-like climbing robot using soft elastomer adhesive treads

Unver, O., Sitti, M.

The International Journal of Robotics Research, 29(14):1761-1777, SAGE Publications Sage UK: London, England, 2010 (article)

pi

[BibTex]

[BibTex]


no image
Note: Aligned deposition and modal characterization of micron and submicron poly (methyl methacyrlate) fiber cantilevers

Nain, A. S., Filiz, S., Burak Ozdoganlar, O., Sitti, M., Amon, C.

Review of Scientific Instruments, 81(1):016102, AIP, 2010 (article)

pi

[BibTex]

[BibTex]


no image
Enhanced adhesion of dopamine methacrylamide elastomers via viscoelasticity tuning

Chung, H., Glass, P., Pothen, J. M., Sitti, M., Washburn, N. R.

Biomacromolecules, 12(2):342-347, American Chemical Society, 2010 (article)

pi

Project Page [BibTex]

Project Page [BibTex]

2009


no image
Magnetic mobile micro-robots

Pawashe, C., Floyd, S., Sitti, M.

7eme Journees Nationales de la Recherche en Robotique, 2009 (article)

pi

[BibTex]

2009


[BibTex]


no image
Gecko-Inspired Directional and Controllable Adhesion

Murphy, M. P., Aksak, B., Sitti, M.

Small, 5(2):170-175, WILEY-VCH Verlag, 2009 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Multiple magnetic microrobot control using electrostatic anchoring

Pawashe, C., Floyd, S., Sitti, M.

Applied Physics Letters, 94(16):164108, AIP, 2009 (article)

pi

[BibTex]

[BibTex]


no image
Wet self-cleaning of biologically inspired elastomer mushroom shaped microfibrillar adhesives

Kim, S., Cheung, E., Sitti, M.

Langmuir, 25(13):7196-7199, ACS Publications, 2009 (article)

pi

[BibTex]

[BibTex]


no image
Robot ceiling climbers harness new tricks

Marks, Paul

New Scientist, 202(2705):18-19, Reed Business Information, 2009 (article)

pi

[BibTex]

[BibTex]


no image
Biologically-Inspired Patterned and Coated Adhesives for Medical Devices

Glass, P, Chung, H, Lee, C, Tworkoski, E, Washburn, NR, Sitti, M

Journal of Medical Devices, 3(2):027537, American Society of Mechanical Engineers, 2009 (article)

pi

[BibTex]

[BibTex]


no image
Modeling and experimental characterization of an untethered magnetic micro-robot

Pawashe, C., Floyd, S., Sitti, M.

The International Journal of Robotics Research, 28(8):1077-1094, Sage Publications, 2009 (article)

pi

[BibTex]

[BibTex]


no image
Towards automated nanoassembly with the atomic force microscope: A versatile drift compensation procedure

Krohs, F., Onal, C., Sitti, M., Fatikow, S.

Journal of Dynamic Systems, Measurement, and Control, 131(6):061106, American Society of Mechanical Engineers, 2009 (article)

pi

[BibTex]

[BibTex]


Valero-Cuevas, F., Hoffmann, H., Kurse, M. U., Kutch, J. J., Theodorou, E. A.

IEEE Reviews in Biomedical Engineering – (All authors have equally contributed), (2):110?135, 2009, clmc (article)

Abstract
Computational models of the neuromuscular system hold the potential to allow us to reach a deeper understanding of neuromuscular function and clinical rehabilitation by complementing experimentation. By serving as a means to distill and explore specific hypotheses, computational models emerge from prior experimental data and motivate future experimental work. Here we review computational tools used to understand neuromuscular function including musculoskeletal modeling, machine learning, control theory, and statistical model analysis. We conclude that these tools, when used in combination, have the potential to further our understanding of neuromuscular function by serving as a rigorous means to test scientific hypotheses in ways that complement and leverage experimental data.

am

link (url) [BibTex]

link (url) [BibTex]


no image
On-line learning and modulation of periodic movements with nonlinear dynamical systems

Gams, A., Ijspeert, A., Schaal, S., Lenarčič, J.

Autonomous Robots, 27(1):3-23, 2009, clmc (article)

Abstract
Abstract  The paper presents a two-layered system for (1) learning and encoding a periodic signal without any knowledge on its frequency and waveform, and (2) modulating the learned periodic trajectory in response to external events. The system is used to learn periodic tasks on a humanoid HOAP-2 robot. The first layer of the system is a dynamical system responsible for extracting the fundamental frequency of the input signal, based on adaptive frequency oscillators. The second layer is a dynamical system responsible for learning of the waveform based on a built-in learning algorithm. By combining the two dynamical systems into one system we can rapidly teach new trajectories to robots without any knowledge of the frequency of the demonstration signal. The system extracts and learns only one period of the demonstration signal. Furthermore, the trajectories are robust to perturbations and can be modulated to cope with a dynamic environment. The system is computationally inexpensive, works on-line for any periodic signal, requires no additional signal processing to determine the frequency of the input signal and can be applied in parallel to multiple dimensions. Additionally, it can adapt to changes in frequency and shape, e.g. to non-stationary signals, such as hand-generated signals and human demonstrations.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Local dimensionality reduction for non-parametric regression

Hoffman, H., Schaal, S., Vijayakumar, S.

Neural Processing Letters, 2009, clmc (article)

Abstract
Locally-weighted regression is a computationally-efficient technique for non-linear regression. However, for high-dimensional data, this technique becomes numerically brittle and computationally too expensive if many local models need to be maintained simultaneously. Thus, local linear dimensionality reduction combined with locally-weighted regression seems to be a promising solution. In this context, we review linear dimensionality-reduction methods, compare their performance on nonparametric locally-linear regression, and discuss their ability to extend to incremental learning. The considered methods belong to the following three groups: (1) reducing dimensionality only on the input data, (2) modeling the joint input-output data distribution, and (3) optimizing the correlation between projection directions and output data. Group 1 contains principal component regression (PCR); group 2 contains principal component analysis (PCA) in joint input and output space, factor analysis, and probabilistic PCA; and group 3 contains reduced rank regression (RRR) and partial least squares (PLS) regression. Among the tested methods, only group 3 managed to achieve robust performance even for a non-optimal number of components (factors or projection directions). In contrast, group 1 and 2 failed for fewer components since these methods rely on the correct estimate of the true intrinsic dimensionality. In group 3, PLS is the only method for which a computationally-efficient incremental implementation exists. Thus, PLS appears to be ideally suited as a building block for a locally-weighted regressor in which projection directions are incrementally added on the fly.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Enhanced adhesion by gecko-inspired hierarchical fibrillar adhesives

Murphy, M. P., Kim, S., Sitti, M.

ACS applied materials \& interfaces, 1(4):849-855, American Chemical Society, 2009 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Miniature devices: Voyage of the microrobots

Sitti, M.

Nature, 458(7242):1121-1122, Nature Publishing Group, 2009 (article)

pi

[BibTex]

[BibTex]


no image
Dry spinning based spinneret based tunable engineered parameters (STEP) technique for controlled and aligned deposition of polymeric nanofibers

Nain, A. S., Sitti, M., Jacobson, A., Kowalewski, T., Amon, C.

Macromolecular rapid communications, 30(16):1406-1412, WILEY-VCH Verlag, 2009 (article)

pi

[BibTex]

[BibTex]


no image
Two-dimensional contact and noncontact micromanipulation in liquid using an untethered mobile magnetic microrobot

Floyd, S., Pawashe, C., Sitti, M.

IEEE Transactions on Robotics, 25(6):1332-1342, IEEE, 2009 (article)

pi

[BibTex]

[BibTex]


no image
A scaled bilateral control system for experimental one-dimensional teleoperated nanomanipulation

Onal, C. D., Sitti, M.

The International Journal of Robotics Research, 28(4):484-497, Sage Publications, 2009 (article)

pi

[BibTex]

[BibTex]


no image
A Swallowable Tethered Capsule Endoscope for Diagnosing Barrett’s Esophagus

Glass, P., Sitti, M., Pennathur, A., Appasamy, R.

Gastrointestinal Endoscopy, 69(5):AB106, Mosby, 2009 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Adhesion of biologically inspired polymer microfibers on soft surfaces

Cheung, E., Sitti, M.

Langmuir, 25(12):6613-6616, ACS Publications, 2009 (article)

pi

[BibTex]

[BibTex]


no image
Dangling chain elastomers as repeatable fibrillar adhesives

Sitti, M., Cusick, B., Aksak, B., Nese, A., Lee, H., Dong, H., Kowalewski, T., Matyjaszewski, K.

ACS applied materials \& interfaces, 1(10):2277-2287, American Chemical Society, 2009 (article)

pi

[BibTex]

[BibTex]