Header logo is


2019


no image
Convolutional neural networks: A magic bullet for gravitational-wave detection?

Gebhard, T., Kilbertus, N., Harry, I., Schölkopf, B.

Physical Review D, 100(6):063015, American Physical Society, September 2019 (article)

ei

link (url) DOI [BibTex]

2019


link (url) DOI [BibTex]


no image
Data scarcity, robustness and extreme multi-label classification

Babbar, R., Schölkopf, B.

Machine Learning, 108(8):1329-1351, September 2019, Special Issue of the ECML PKDD 2019 Journal Track (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
A 32-channel multi-coil setup optimized for human brain shimming at 9.4T

Aghaeifar, A., Zhou, J., Heule, R., Tabibian, B., Schölkopf, B., Jia, F., Zaitsev, M., Scheffler, K.

Magnetic Resonance in Medicine, 2019, (Early View) (article)

ei

DOI [BibTex]

DOI [BibTex]


Thumb xl fig multidimensional contrast limited adaptive histogram equalization kb
Multidimensional Contrast Limited Adaptive Histogram Equalization

Stimper, V., Bauer, S., Ernstorfer, R., Schölkopf, B., Xian, R. P.

IEEE Access, 7, pages: 165437-165447, 2019 (article)

ei

arXiv link (url) DOI [BibTex]

arXiv link (url) DOI [BibTex]


no image
Enhancing Human Learning via Spaced Repetition Optimization

Tabibian, B., Upadhyay, U., De, A., Zarezade, A., Schölkopf, B., Gomez Rodriguez, M.

Proceedings of the National Academy of Sciences, 2019, PNAS published ahead of print January 22, 2019 (article)

ei

DOI Project Page Project Page [BibTex]

DOI Project Page Project Page [BibTex]


Thumb xl screenshot 2019 03 25 at 14.29.22
Learning to Control Highly Accelerated Ballistic Movements on Muscular Robots

Büchler, D., Calandra, R., Peters, J.

2019 (article) Submitted

Abstract
High-speed and high-acceleration movements are inherently hard to control. Applying learning to the control of such motions on anthropomorphic robot arms can improve the accuracy of the control but might damage the system. The inherent exploration of learning approaches can lead to instabilities and the robot reaching joint limits at high speeds. Having hardware that enables safe exploration of high-speed and high-acceleration movements is therefore desirable. To address this issue, we propose to use robots actuated by Pneumatic Artificial Muscles (PAMs). In this paper, we present a four degrees of freedom (DoFs) robot arm that reaches high joint angle accelerations of up to 28000 °/s^2 while avoiding dangerous joint limits thanks to the antagonistic actuation and limits on the air pressure ranges. With this robot arm, we are able to tune control parameters using Bayesian optimization directly on the hardware without additional safety considerations. The achieved tracking performance on a fast trajectory exceeds previous results on comparable PAM-driven robots. We also show that our system can be controlled well on slow trajectories with PID controllers due to careful construction considerations such as minimal bending of cables, lightweight kinematics and minimal contact between PAMs and PAMs with the links. Finally, we propose a novel technique to control the the co-contraction of antagonistic muscle pairs. Experimental results illustrate that choosing the optimal co-contraction level is vital to reach better tracking performance. Through the use of PAM-driven robots and learning, we do a small step towards the future development of robots capable of more human-like motions.

ei

Arxiv Video [BibTex]


no image
Doing more with less: Meta-reasoning and meta-learning in humans and machines

Griffiths, T., Callaway, F., Chang, M., Grant, E., Krueger, P. M., Lieder, F.

Current Opinion in Behavioral Sciences, 2019 (article)

re

DOI [BibTex]

DOI [BibTex]


no image
Inferring causation from time series with perspectives in Earth system sciences

Runge, J., Bathiany, S., Bollt, E., Camps-Valls, G., Coumou, D., Deyle, E., Glymour, C., Kretschmer, M., Mahecha, M., van Nes, E., Peters, J., Quax, R., Reichstein, M., Scheffer, M. S. B., Spirtes, P., Sugihara, G., Sun, J., Zhang, K., Zscheischler, J.

Nature Communications, 2019 (article) In revision

ei

[BibTex]

[BibTex]


no image
Quantum mean embedding of probability distributions

Kübler, J. M., Muandet, K., Schölkopf, B.

Physical Review Research, 1(3):033159, American Physical Society, 2019 (article)

ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl screenshot from 2019 03 21 12 11 19
Automated Generation of Reactive Programs from Human Demonstration for Orchestration of Robot Behaviors

Berenz, V., Bjelic, A., Mainprice, J.

ArXiv, 2019 (article)

Abstract
Social robots or collaborative robots that have to interact with people in a reactive way are difficult to program. This difficulty stems from the different skills required by the programmer: to provide an engaging user experience the behavior must include a sense of aesthetics while robustly operating in a continuously changing environment. The Playful framework allows composing such dynamic behaviors using a basic set of action and perception primitives. Within this framework, a behavior is encoded as a list of declarative statements corresponding to high-level sensory-motor couplings. To facilitate non-expert users to program such behaviors, we propose a Learning from Demonstration (LfD) technique that maps motion capture of humans directly to a Playful script. The approach proceeds by identifying the sensory-motor couplings that are active at each step using the Viterbi path in a Hidden Markov Model (HMM). Given these activation patterns, binary classifiers called evaluations are trained to associate activations to sensory data. Modularity is increased by clustering the sensory-motor couplings, leading to a hierarchical tree structure. The novelty of the proposed approach is that the learned behavior is encoded not in terms of trajectories in a task space, but as couplings between sensory information and high-level motor actions. This provides advantages in terms of behavioral generalization and reactivity displayed by the robot.

am

Support Video link (url) [BibTex]


no image
Cognitive Prostheses for Goal Achievement

Lieder, F., Chen, O. X., Krueger, P. M., Griffiths, T.

Nature Human Behavior, 2019 (article)

re

DOI [BibTex]

DOI [BibTex]


no image
A rational reinterpretation of dual process theories

Milli, S., Lieder, F., Griffiths, T.

2019 (article)

re

DOI [BibTex]

DOI [BibTex]


no image
Eigendecompositions of Transfer Operators in Reproducing Kernel Hilbert Spaces

Klus, S., Schuster, I., Muandet, K.

Journal of Nonlinear Science, 2019, First Online: 21 August 2019 (article)

ei

DOI [BibTex]

DOI [BibTex]

2018


no image
Parallel and functionally segregated processing of task phase and conscious content in the prefrontal cortex

Kapoor, V., Besserve, M., Logothetis, N. K., Panagiotaropoulos, T. I.

Communications Biology, 1(215):1-12, December 2018 (article)

ei

link (url) DOI Project Page [BibTex]

2018


link (url) DOI Project Page [BibTex]


Thumb xl screenshot from 2018 06 15 22 59 30
A Value-Driven Eldercare Robot: Virtual and Physical Instantiations of a Case-Supported Principle-Based Behavior Paradigm

Anderson, M., Anderson, S., Berenz, V.

Proceedings of the IEEE, pages: 1,15, October 2018 (article)

Abstract
In this paper, a case-supported principle-based behavior paradigm is proposed to help ensure ethical behavior of autonomous machines. We argue that ethically significant behavior of autonomous systems should be guided by explicit ethical principles determined through a consensus of ethicists. Such a consensus is likely to emerge in many areas in which autonomous systems are apt to be deployed and for the actions they are liable to undertake. We believe that this is the case since we are more likely to agree on how machines ought to treat us than on how human beings ought to treat one another. Given such a consensus, particular cases of ethical dilemmas where ethicists agree on the ethically relevant features and the right course of action can be used to help discover principles that balance these features when they are in conflict. Such principles not only help ensure ethical behavior of complex and dynamic systems but also can serve as a basis for justification of this behavior. The requirements, methods, implementation, and evaluation components of the paradigm are detailed as well as its instantiation in both a simulated and real robot functioning in the domain of eldercare.

am

link (url) DOI [BibTex]


Thumb xl screen shot 2019 01 07 at 12.05.00
Control of Musculoskeletal Systems using Learned Dynamics Models

Büchler, D., Calandra, R., Schölkopf, B., Peters, J.

IEEE Robotics and Automation Letters, Robotics and Automation Letters, 3(4):3161-3168, IEEE, 2018 (article)

Abstract
Controlling musculoskeletal systems, especially robots actuated by pneumatic artificial muscles, is a challenging task due to nonlinearities, hysteresis effects, massive actuator de- lay and unobservable dependencies such as temperature. Despite such difficulties, muscular systems offer many beneficial prop- erties to achieve human-comparable performance in uncertain and fast-changing tasks. For example, muscles are backdrivable and provide variable stiffness while offering high forces to reach high accelerations. In addition, the embodied intelligence deriving from the compliance might reduce the control demands for specific tasks. In this paper, we address the problem of how to accurately control musculoskeletal robots. To address this issue, we propose to learn probabilistic forward dynamics models using Gaussian processes and, subsequently, to employ these models for control. However, Gaussian processes dynamics models cannot be set-up for our musculoskeletal robot as for traditional motor- driven robots because of unclear state composition etc. We hence empirically study and discuss in detail how to tune these approaches to complex musculoskeletal robots and their specific challenges. Moreover, we show that our model can be used to accurately control an antagonistic pair of pneumatic artificial muscles for a trajectory tracking task while considering only one- step-ahead predictions of the forward model and incorporating model uncertainty.

ei

RAL18final link (url) DOI Project Page [BibTex]

RAL18final link (url) DOI Project Page [BibTex]


Thumb xl screenshot from 2017 07 27 17 24 14
Playful: Reactive Programming for Orchestrating Robotic Behavior

Berenz, V., Schaal, S.

IEEE Robotics Automation Magazine, 25(3):49-60, September 2018 (article) In press

Abstract
For many service robots, reactivity to changes in their surroundings is a must. However, developing software suitable for dynamic environments is difficult. Existing robotic middleware allows engineers to design behavior graphs by organizing communication between components. But because these graphs are structurally inflexible, they hardly support the development of complex reactive behavior. To address this limitation, we propose Playful, a software platform that applies reactive programming to the specification of robotic behavior.

am

playful website playful_IEEE_RAM link (url) DOI [BibTex]


Thumb xl screen shot 2018 09 19 at 09.33.59
ClusterNet: Instance Segmentation in RGB-D Images

Shao, L., Tian, Y., Bohg, J.

arXiv, September 2018, Submitted to ICRA'19 (article) Submitted

Abstract
We propose a method for instance-level segmentation that uses RGB-D data as input and provides detailed information about the location, geometry and number of {\em individual\/} objects in the scene. This level of understanding is fundamental for autonomous robots. It enables safe and robust decision-making under the large uncertainty of the real-world. In our model, we propose to use the first and second order moments of the object occupancy function to represent an object instance. We train an hourglass Deep Neural Network (DNN) where each pixel in the output votes for the 3D position of the corresponding object center and for the object's size and pose. The final instance segmentation is achieved through clustering in the space of moments. The object-centric training loss is defined on the output of the clustering. Our method outperforms the state-of-the-art instance segmentation method on our synthesized dataset. We show that our method generalizes well on real-world data achieving visually better segmentation results.

am

link (url) [BibTex]

link (url) [BibTex]


Thumb xl grasping
Leveraging Contact Forces for Learning to Grasp

Merzic, H., Bogdanovic, M., Kappler, D., Righetti, L., Bohg, J.

arXiv, September 2018, Submitted to ICRA'19 (article) Submitted

Abstract
Grasping objects under uncertainty remains an open problem in robotics research. This uncertainty is often due to noisy or partial observations of the object pose or shape. To enable a robot to react appropriately to unforeseen effects, it is crucial that it continuously takes sensor feedback into account. While visual feedback is important for inferring a grasp pose and reaching for an object, contact feedback offers valuable information during manipulation and grasp acquisition. In this paper, we use model-free deep reinforcement learning to synthesize control policies that exploit contact sensing to generate robust grasping under uncertainty. We demonstrate our approach on a multi-fingered hand that exhibits more complex finger coordination than the commonly used two- fingered grippers. We conduct extensive experiments in order to assess the performance of the learned policies, with and without contact sensing. While it is possible to learn grasping policies without contact sensing, our results suggest that contact feedback allows for a significant improvement of grasping robustness under object pose uncertainty and for objects with a complex shape.

am mg

video arXiv [BibTex]

video arXiv [BibTex]


Thumb xl octo turned
Real-time Perception meets Reactive Motion Generation

(Best Systems Paper Finalists - Amazon Robotics Best Paper Awards in Manipulation)

Kappler, D., Meier, F., Issac, J., Mainprice, J., Garcia Cifuentes, C., Wüthrich, M., Berenz, V., Schaal, S., Ratliff, N., Bohg, J.

IEEE Robotics and Automation Letters, 3(3):1864-1871, July 2018 (article)

Abstract
We address the challenging problem of robotic grasping and manipulation in the presence of uncertainty. This uncertainty is due to noisy sensing, inaccurate models and hard-to-predict environment dynamics. Our approach emphasizes the importance of continuous, real-time perception and its tight integration with reactive motion generation methods. We present a fully integrated system where real-time object and robot tracking as well as ambient world modeling provides the necessary input to feedback controllers and continuous motion optimizers. Specifically, they provide attractive and repulsive potentials based on which the controllers and motion optimizer can online compute movement policies at different time intervals. We extensively evaluate the proposed system on a real robotic platform in four scenarios that exhibit either challenging workspace geometry or a dynamic environment. We compare the proposed integrated system with a more traditional sense-plan-act approach that is still widely used. In 333 experiments, we show the robustness and accuracy of the proposed system.

am

arxiv video video link (url) DOI Project Page [BibTex]


no image
Infinite Factorial Finite State Machine for Blind Multiuser Channel Estimation

Ruiz, F. J. R., Valera, I., Svensson, L., Perez-Cruz, F.

IEEE Transactions on Cognitive Communications and Networking, 4(2):177-191, June 2018 (article)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Assisting Movement Training and Execution With Visual and Haptic Feedback

Ewerton, M., Rother, D., Weimar, J., Kollegger, G., Wiemeyer, J., Peters, J., Maeda, G.

Frontiers in Neurorobotics, 12, May 2018 (article)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Mixture of Attractors: A Novel Movement Primitive Representation for Learning Motor Skills From Demonstrations

Manschitz, S., Gienger, M., Kober, J., Peters, J.

IEEE Robotics and Automation Letters, 3(2):926-933, April 2018 (article)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Probabilistic movement primitives under unknown system dynamics

Paraschos, A., Rueckert, E., Peters, J., Neumann, G.

Advanced Robotics, 32(6):297-310, April 2018 (article)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
An Algorithmic Perspective on Imitation Learning

Osa, T., Pajarinen, J., Neumann, G., Bagnell, J., Abbeel, P., Peters, J.

Foundations and Trends in Robotics, 7(1-2):1-179, March 2018 (article)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Using Probabilistic Movement Primitives in Robotics

Paraschos, A., Daniel, C., Peters, J., Neumann, G.

Autonomous Robots, 42(3):529-551, March 2018 (article)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
A kernel-based approach to learning contact distributions for robot manipulation tasks

Kroemer, O., Leischnig, S., Luettgen, S., Peters, J.

Autonomous Robots, 42(3):581-600, March 2018 (article)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Distributed Event-Based State Estimation for Networked Systems: An LMI Approach

Muehlebach, M., Trimpe, S.

IEEE Transactions on Automatic Control, 63(1):269-276, January 2018 (article)

am ics

arXiv (extended version) DOI Project Page [BibTex]

arXiv (extended version) DOI Project Page [BibTex]


no image
Approximate Value Iteration Based on Numerical Quadrature

Vinogradska, J., Bischoff, B., Peters, J.

IEEE Robotics and Automation Letters, 3(2):1330-1337, January 2018 (article)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Biomimetic Tactile Sensors and Signal Processing with Spike Trains: A Review

Yi, Z., Zhang, Y., Peters, J.

Sensors and Actuators A: Physical, 269, pages: 41-52, January 2018 (article)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Design and Analysis of the NIPS 2016 Review Process

Shah*, N., Tabibian*, B., Muandet, K., Guyon, I., von Luxburg, U.

Journal of Machine Learning Research, 19(49):1-34, 2018, *equal contribution (article)

ei slt

arXiv link (url) Project Page Project Page [BibTex]

arXiv link (url) Project Page Project Page [BibTex]


no image
A Flexible Approach for Fair Classification

Zafar, M. B., Valera, I., Gomez Rodriguez, M., Gummadi, K.

Journal of Machine Learning, 2018 (article) Accepted

ei

Project Page [BibTex]

Project Page [BibTex]


no image
Does universal controllability of physical systems prohibit thermodynamic cycles?

Janzing, D., Wocjan, P.

Open Systems and Information Dynamics, 25(3):1850016, 2018 (article)

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


Thumb xl img
Combining learned and analytical models for predicting action effects

Kloss, A., Schaal, S., Bohg, J.

arXiv, 2018 (article) Submitted

Abstract
One of the most basic skills a robot should possess is predicting the effect of physical interactions with objects in the environment. This enables optimal action selection to reach a certain goal state. Traditionally, dynamics are approximated by physics-based analytical models. These models rely on specific state representations that may be hard to obtain from raw sensory data, especially if no knowledge of the object shape is assumed. More recently, we have seen learning approaches that can predict the effect of complex physical interactions directly from sensory input. It is however an open question how far these models generalize beyond their training data. In this work, we investigate the advantages and limitations of neural network based learning approaches for predicting the effects of actions based on sensory input and show how analytical and learned models can be combined to leverage the best of both worlds. As physical interaction task, we use planar pushing, for which there exists a well-known analytical model and a large real-world dataset. We propose to use a convolutional neural network to convert raw depth images or organized point clouds into a suitable representation for the analytical model and compare this approach to using neural networks for both, perception and prediction. A systematic evaluation of the proposed approach on a very large real-world dataset shows two main advantages of the hybrid architecture. Compared to a pure neural network, it significantly (i) reduces required training data and (ii) improves generalization to novel physical interaction.

am

arXiv pdf link (url) [BibTex]


no image
Learning Causality and Causality-Related Learning: Some Recent Progress

Zhang, K., Schölkopf, B., Spirtes, P., Glymour, C.

National Science Review, 5(1):26-29, 2018 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Online optimal trajectory generation for robot table tennis

Koc, O., Maeda, G., Peters, J.

Robotics and Autonomous Systems, 105, pages: 121-137, 2018 (article)

ei

PDF link (url) DOI Project Page [BibTex]

PDF link (url) DOI Project Page [BibTex]


no image
Counterfactual Mean Embedding: A Kernel Method for Nonparametric Causal Inference

Muandet, K., Kanagawa, M., Saengkyongam, S., Marukata, S.

Arxiv e-prints, arXiv:1805.08845v1 [stat.ML], 2018 (article)

Abstract
This paper introduces a novel Hilbert space representation of a counterfactual distribution---called counterfactual mean embedding (CME)---with applications in nonparametric causal inference. Counterfactual prediction has become an ubiquitous tool in machine learning applications, such as online advertisement, recommendation systems, and medical diagnosis, whose performance relies on certain interventions. To infer the outcomes of such interventions, we propose to embed the associated counterfactual distribution into a reproducing kernel Hilbert space (RKHS) endowed with a positive definite kernel. Under appropriate assumptions, the CME allows us to perform causal inference over the entire landscape of the counterfactual distribution. The CME can be estimated consistently from observational data without requiring any parametric assumption about the underlying distributions. We also derive a rate of convergence which depends on the smoothness of the conditional mean and the Radon-Nikodym derivative of the underlying marginal distributions. Our framework can deal with not only real-valued outcome, but potentially also more complex and structured outcomes such as images, sequences, and graphs. Lastly, our experimental results on off-policy evaluation tasks demonstrate the advantages of the proposed estimator.

ei pn

arXiv [BibTex]

arXiv [BibTex]


no image
Hierarchical Reinforcement Learning of Multiple Grasping Strategies with Human Instructions

Osa, T., Peters, J., Neumann, G.

Advanced Robotics, 32(18):955-968, 2018 (article)

ei

DOI Project Page [BibTex]


no image
Autofocusing-based phase correction

Loktyushin, A., Ehses, P., Schölkopf, B., Scheffler, K.

Magnetic Resonance in Medicine, 80(3):958-968, 2018 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Case series: Slowing alpha rhythm in late-stage ALS patients

Hohmann, M. R., Fomina, T., Jayaram, V., Emde, T., Just, J., Synofzik, M., Schölkopf, B., Schöls, L., Grosse-Wentrup, M.

Clinical Neurophysiology, 129(2):406-408, 2018 (article)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Inverse Reinforcement Learning via Nonparametric Spatio-Temporal Subgoal Modeling

Šošić, A., Rueckert, E., Peters, J., Zoubir, A., Koeppl, H.

Journal of Machine Learning Research, 19(69):1-45, 2018 (article)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Grip Stabilization of Novel Objects using Slip Prediction

Veiga, F., Peters, J., Hermans, T.

IEEE Transactions on Haptics, 2018 (article) In press

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Electrophysiological correlates of neurodegeneration in motor and non-motor brain regions in amyotrophic lateral sclerosis—implications for brain–computer interfacing

Kellmeyer, P., Grosse-Wentrup, M., Schulze-Bonhage, A., Ziemann, U., Ball, T.

Journal of Neural Engineering, 15(4):041003, IOP Publishing, 2018 (article)

ei

link (url) [BibTex]

link (url) [BibTex]