Header logo is


2020


A Gamified App that Helps People Overcome Self-Limiting Beliefs by Promoting Metacognition
A Gamified App that Helps People Overcome Self-Limiting Beliefs by Promoting Metacognition

Amo, V., Lieder, F.

SIG 8 Meets SIG 16, September 2020 (conference) Accepted

Abstract
Previous research has shown that approaching learning with a growth mindset is key for maintaining motivation and overcoming setbacks. Mindsets are systems of beliefs that people hold to be true. They influence a person's attitudes, thoughts, and emotions when they learn something new or encounter challenges. In clinical psychology, metareasoning (reflecting on one's mental processes) and meta-awareness (recognizing thoughts as mental events instead of equating them to reality) have proven effective for overcoming maladaptive thinking styles. Hence, they are potentially an effective method for overcoming self-limiting beliefs in other domains as well. However, the potential of integrating assisted metacognition into mindset interventions has not been explored yet. Here, we propose that guiding and training people on how to leverage metareasoning and meta-awareness for overcoming self-limiting beliefs can significantly enhance the effectiveness of mindset interventions. To test this hypothesis, we develop a gamified mobile application that guides and trains people to use metacognitive strategies based on Cognitive Restructuring (CR) and Acceptance Commitment Therapy (ACT) techniques. The application helps users to identify and overcome self-limiting beliefs by working with aversive emotions when they are triggered by fixed mindsets in real-life situations. Our app aims to help people sustain their motivation to learn when they face inner obstacles (e.g. anxiety, frustration, and demotivation). We expect the application to be an effective tool for helping people better understand and develop the metacognitive skills of emotion regulation and self-regulation that are needed to overcome self-limiting beliefs and develop growth mindsets.

re

A gamified app that helps people overcome self-limiting beliefs by promoting metacognition [BibTex]


no image
Model-Agnostic Counterfactual Explanations for Consequential Decisions

Karimi, A., Barthe, G., Balle, B., Valera, I.

Proceedings of the 23rd International Conference on Artificial Intelligence and Statistics (AISTATS), 108, pages: 895-905, Proceedings of Machine Learning Research, (Editors: Silvia Chiappa and Roberto Calandra), PMLR, August 2020 (conference)

ei plg

arXiv link (url) [BibTex]

arXiv link (url) [BibTex]


Learning Sensory-Motor Associations from Demonstration
Learning Sensory-Motor Associations from Demonstration

Berenz, V., Bjelic, A., Herath, L., Mainprice, J.

29th IEEE International Conference on Robot and Human Interactive Communication (Ro-Man 2020), August 2020 (conference) Accepted

Abstract
We propose a method which generates reactive robot behavior learned from human demonstration. In order to do so, we use the Playful programming language which is based on the reactive programming paradigm. This allows us to represent the learned behavior as a set of associations between sensor and motor primitives in a human readable script. Distinguishing between sensor and motor primitives introduces a supplementary level of granularity and more importantly enforces feedback, increasing adaptability and robustness. As the experimental section shows, useful behaviors may be learned from a single demonstration covering a very limited portion of the task space.

am

[BibTex]

[BibTex]


no image
Fair Decisions Despite Imperfect Predictions

Kilbertus, N., Gomez Rodriguez, M., Schölkopf, B., Muandet, K., Valera, I.

Proceedings of the 23rd International Conference on Artificial Intelligence and Statistics (AISTATS), 108, pages: 277-287, Proceedings of Machine Learning Research, (Editors: Silvia Chiappa and Roberto Calandra), PMLR, August 2020 (conference)

ei plg

link (url) [BibTex]

link (url) [BibTex]


no image
How to navigate everyday distractions: Leveraging optimal feedback to train attention control

Wirzberger, M., Lado, A., Eckerstorfer, L., Oreshnikov, I., Passy, J., Stock, A., Shenhav, A., Lieder, F.

Annual Meeting of the Cognitive Science Society, July 2020 (conference)

Abstract
To stay focused on their chosen tasks, people have to inhibit distractions. The underlying attention control skills can improve through reinforcement learning, which can be accelerated by giving feedback. We applied the theory of metacognitive reinforcement learning to develop a training app that gives people optimal feedback on their attention control while they are working or studying. In an eight-day field experiment with 99 participants, we investigated the effect of this training on people's productivity, sustained attention, and self-control. Compared to a control condition without feedback, we found that participants receiving optimal feedback learned to focus increasingly better (f = .08, p < .01) and achieved higher productivity scores (f = .19, p < .01) during the training. In addition, they evaluated their productivity more accurately (r = .12, p < .01). However, due to asymmetric attrition problems, these findings need to be taken with a grain of salt.

re sf

How to navigate everyday distractions: Leveraging optimal feedback to train attention control DOI Project Page [BibTex]


How to Train Your Differentiable Filter
How to Train Your Differentiable Filter

Alina Kloss, G. M. J. B.

In July 2020 (inproceedings)

Abstract
In many robotic applications, it is crucial to maintain a belief about the state of a system. These state estimates serve as input for planning and decision making and provide feedback during task execution. Recursive Bayesian Filtering algorithms address the state estimation problem, but they require models of process dynamics and sensory observations as well as noise characteristics of these models. Recently, multiple works have demonstrated that these models can be learned by end-to-end training through differentiable versions of Recursive Filtering algorithms.The aim of this work is to improve understanding and applicability of such differentiable filters (DF). We implement DFs with four different underlying filtering algorithms and compare them in extensive experiments. We find that long enough training sequences are crucial for DF performance and that modelling heteroscedastic observation noise significantly improves results. And while the different DFs perform similarly on our example task, we recommend the differentiable Extended Kalman Filter for getting started due to its simplicity.

am

pdf [BibTex]


no image
Leveraging Machine Learning to Automatically Derive Robust Planning Strategies from Biased Models of the Environment

Kemtur, A., Jain, Y. R., Mehta, A., Callaway, F., Consul, S., Stojcheski, J., Lieder, F.

CogSci 2020, July 2020, Anirudha Kemtur and Yash Raj Jain contributed equally to this publication. (conference)

Abstract
Teaching clever heuristics is a promising approach to improve decision-making. We can leverage machine learning to discover clever strategies automatically. Current methods require an accurate model of the decision problems people face in real life. But most models are misspecified because of limited information and cognitive biases. To address this problem we develop strategy discovery methods that are robust to model misspecification. Robustness is achieved by model-ing model-misspecification and handling uncertainty about the real-world according to Bayesian inference. We translate our methods into an intelligent tutor that automatically discovers and teaches robust planning strategies. Our robust cognitive tutor significantly improved human decision-making when the model was so biased that conventional cognitive tutors were no longer effective. These findings highlight that our robust strategy discovery methods are a significant step towards leveraging artificial intelligence to improve human decision-making in the real world.

re

Project Page [BibTex]

Project Page [BibTex]


no image
Where Does It End? - Reasoning About Hidden Surfaces by Object Intersection Constraints

Strecke, M., Stückler, J.

In Proceedings IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR), IEEE/CVF International Conference on Computer Vision and Pattern Recognition (CVPR) 2020, June 2020 (inproceedings)

ev

preprint project page Code DOI [BibTex]

preprint project page Code DOI [BibTex]


Changes in Normal Force During Passive Dynamic Touch: Contact Mechanics and Perception
Changes in Normal Force During Passive Dynamic Touch: Contact Mechanics and Perception

Gueorguiev, D., Lambert, J., Thonnard, J., Kuchenbecker, K. J.

In Proceedings of the IEEE Haptics Symposium (HAPTICS), pages: 746-752, Washington, USA, March 2020 (inproceedings)

Abstract
Using a force-controlled robotic platform, we investigated the contact mechanics and psychophysical responses induced by negative and positive modulations in normal force during passive dynamic touch. In the natural state of the finger, the applied normal force modulation induces a correlated change in the tangential force. In a second condition, we applied talcum powder to the fingerpad, which induced a significant modification in the slope of the correlated tangential change. In both conditions, the same ten participants had to detect the interval that contained a decrease or an increase in the pre-stimulation normal force of 1 N. In the natural state, the 75% just noticeable difference for this task was found to be a ratio of 0.19 and 0.18 for decreases and increases, respectively. With talcum powder on the fingerpad, the normal force thresholds remained stable, following the Weber law of constant just noticeable differences, while the tangential force thresholds changed in the same way as the correlation slopes. This result suggests that participants predominantly relied on the normal force changes to perform the detection task. In addition, participants were asked to report whether the force decreased or increased. Their performance was generally poor at this second task even for above-threshold changes. However, their accuracy slightly improved with the talcum powder, which might be due to the reduced finger-surface friction.

hi

DOI [BibTex]

DOI [BibTex]


no image
ACTrain: Ein KI-basiertes Aufmerksamkeitstraining für die Wissensarbeit [ACTrain: An AI-based attention training for knowledge work]

Wirzberger, M., Oreshnikov, I., Passy, J., Lado, A., Shenhav, A., Lieder, F.

66th Spring Conference of the German Ergonomics Society, 2020 (conference)

Abstract
Unser digitales Zeitalter lebt von Informationen und stellt unsere begrenzte Verarbeitungskapazität damit täglich auf die Probe. Gerade in der Wissensarbeit haben ständige Ablenkungen erhebliche Leistungseinbußen zur Folge. Unsere intelligente Anwendung ACTrain setzt genau an dieser Stelle an und verwandelt Computertätigkeiten in eine Trainingshalle für den Geist. Feedback auf Basis maschineller Lernverfahren zeigt anschaulich den Wert auf, sich nicht von einer selbst gewählten Aufgabe ablenken zu lassen. Diese metakognitive Einsicht soll zum Durchhalten motivieren und das zugrunde liegende Fertigkeitsniveau der Aufmerksamkeitskontrolle stärken. In laufenden Feldexperimenten untersuchen wir die Frage, ob das Training mit diesem optimalen Feedback die Aufmerksamkeits- und Selbstkontrollfertigkeiten im Vergleich zu einer Kontrollgruppe ohne Feedback verbessern kann.

re sf

link (url) Project Page [BibTex]


no image
A Real-Robot Dataset for Assessing Transferability of Learned Dynamics Models

Agudelo-España, D., Zadaianchuk, A., Wenk, P., Garg, A., Akpo, J., Grimminger, F., Viereck, J., Naveau, M., Righetti, L., Martius, G., Krause, A., Schölkopf, B., Bauer, S., Wüthrich, M.

IEEE International Conference on Robotics and Automation (ICRA), 2020 (conference) Accepted

am al ei mg

Project Page PDF [BibTex]

Project Page PDF [BibTex]


no image
Learning to Identify Physical Parameters from Video Using Differentiable Physics

Kandukuri, R., Achterhold, J., Moeller, M., Stueckler, J.

Accepted for publication at the 42th German Conference on Pattern Recognition (GCPR), 2020, GCPR 2020 Honorable Mention (conference) Accepted

ev

link (url) [BibTex]

link (url) [BibTex]


no image
Planning from Images with Deep Latent Gaussian Process Dynamics

Bosch, N., Achterhold, J., Leal-Taixe, L., Stückler, J.

Proceedings of the 2nd Conference on Learning for Dynamics and Control (L4DC), 120, pages: 640-650, Proceedings of Machine Learning Research (PMLR), (Editors: Alexandre M. Bayen and Ali Jadbabaie and George Pappas and Pablo A. Parrilo and Benjamin Recht and Claire Tomlin and Melanie Zeilinger), 2020, arXiv:2005.03770 (conference)

ev

Ppreprint Project page Code poster [BibTex]

Ppreprint Project page Code poster [BibTex]


no image
Sample-efficient Cross-Entropy Method for Real-time Planning

Pinneri, C., Sawant, S., Blaes, S., Achterhold, J., Stueckler, J., Rolinek, M., Martius, G.

In Conference on Robot Learning 2020, 2020 (inproceedings)

Abstract
Trajectory optimizers for model-based reinforcement learning, such as the Cross-Entropy Method (CEM), can yield compelling results even in high-dimensional control tasks and sparse-reward environments. However, their sampling inefficiency prevents them from being used for real-time planning and control. We propose an improved version of the CEM algorithm for fast planning, with novel additions including temporally-correlated actions and memory, requiring 2.7-22x less samples and yielding a performance increase of 1.2-10x in high-dimensional control problems.

al ev

Paper Code [BibTex]

Paper Code [BibTex]


no image
DirectShape: Photometric Alignment of Shape Priors for Visual Vehicle Pose and Shape Estimation

Wang, R., Yang, N., Stückler, J., Cremers, D.

In Proceedings of the IEEE international Conference on Robotics and Automation (ICRA), 2020, arXiv:1904.10097 (inproceedings)

ev

[BibTex]

[BibTex]


no image
Learning to Adapt Multi-View Stereo by Self-Supervision

Mallick, A., Stückler, J., Lensch, H.

Proceedings of the British Machine Vision Conference (BMVC), 2020, to appear (conference) To be published

ev

link (url) [BibTex]

link (url) [BibTex]

2017


Multi-Modal Imitation Learning from Unstructured Demonstrations using Generative Adversarial Nets
Multi-Modal Imitation Learning from Unstructured Demonstrations using Generative Adversarial Nets

Hausman, K., Chebotar, Y., Schaal, S., Sukhatme, G., Lim, J.

In Proceedings from the conference "Neural Information Processing Systems 2017., (Editors: Guyon I. and Luxburg U.v. and Bengio S. and Wallach H. and Fergus R. and Vishwanathan S. and Garnett R.), Curran Associates, Inc., Advances in Neural Information Processing Systems 30 (NIPS), December 2017 (inproceedings)

am

pdf video [BibTex]

2017


pdf video [BibTex]


On the Design of {LQR} Kernels for Efficient Controller Learning
On the Design of LQR Kernels for Efficient Controller Learning

Marco, A., Hennig, P., Schaal, S., Trimpe, S.

Proceedings of the 56th IEEE Annual Conference on Decision and Control (CDC), pages: 5193-5200, IEEE, IEEE Conference on Decision and Control, December 2017 (conference)

Abstract
Finding optimal feedback controllers for nonlinear dynamic systems from data is hard. Recently, Bayesian optimization (BO) has been proposed as a powerful framework for direct controller tuning from experimental trials. For selecting the next query point and finding the global optimum, BO relies on a probabilistic description of the latent objective function, typically a Gaussian process (GP). As is shown herein, GPs with a common kernel choice can, however, lead to poor learning outcomes on standard quadratic control problems. For a first-order system, we construct two kernels that specifically leverage the structure of the well-known Linear Quadratic Regulator (LQR), yet retain the flexibility of Bayesian nonparametric learning. Simulations of uncertain linear and nonlinear systems demonstrate that the LQR kernels yield superior learning performance.

am ics pn

arXiv PDF On the Design of LQR Kernels for Efficient Controller Learning - CDC presentation DOI Project Page [BibTex]

arXiv PDF On the Design of LQR Kernels for Efficient Controller Learning - CDC presentation DOI Project Page [BibTex]


no image
Synchronicity Trumps Mischief in Rhythmic Human-Robot Social-Physical Interaction

Fitter, N. T., Kuchenbecker, K. J.

In Proceedings of the International Symposium on Robotics Research (ISRR), Puerto Varas, Chile, December 2017 (inproceedings) In press

Abstract
Hand-clapping games and other forms of rhythmic social-physical interaction might help foster human-robot teamwork, but the design of such interactions has scarcely been explored. We leveraged our prior work to enable the Rethink Robotics Baxter Research Robot to competently play one-handed tempo-matching hand-clapping games with a human user. To understand how such a robot’s capabilities and behaviors affect user perception, we created four versions of this interaction: the hand clapping could be initiated by either the robot or the human, and the non-initiating partner could be either cooperative, yielding synchronous motion, or mischievously uncooperative. Twenty adults tested two clapping tempos in each of these four interaction modes in a random order, rating every trial on standardized scales. The study results showed that having the robot initiate the interaction gave it a more dominant perceived personality. Despite previous results on the intrigue of misbehaving robots, we found that moving synchronously with the robot almost always made the interaction more enjoyable, less mentally taxing, less physically demanding, and lower effort for users than asynchronous interactions caused by robot or human mischief. Taken together, our results indicate that cooperative rhythmic social-physical interaction has the potential to strengthen human-robot partnerships.

hi

[BibTex]

[BibTex]


Optimizing Long-term Predictions for Model-based Policy Search
Optimizing Long-term Predictions for Model-based Policy Search

Doerr, A., Daniel, C., Nguyen-Tuong, D., Marco, A., Schaal, S., Toussaint, M., Trimpe, S.

Proceedings of 1st Annual Conference on Robot Learning (CoRL), 78, pages: 227-238, (Editors: Sergey Levine and Vincent Vanhoucke and Ken Goldberg), 1st Annual Conference on Robot Learning, November 2017 (conference)

Abstract
We propose a novel long-term optimization criterion to improve the robustness of model-based reinforcement learning in real-world scenarios. Learning a dynamics model to derive a solution promises much greater data-efficiency and reusability compared to model-free alternatives. In practice, however, modelbased RL suffers from various imperfections such as noisy input and output data, delays and unmeasured (latent) states. To achieve higher resilience against such effects, we propose to optimize a generative long-term prediction model directly with respect to the likelihood of observed trajectories as opposed to the common approach of optimizing a dynamics model for one-step-ahead predictions. We evaluate the proposed method on several artificial and real-world benchmark problems and compare it to PILCO, a model-based RL framework, in experiments on a manipulation robot. The results show that the proposed method is competitive compared to state-of-the-art model learning methods. In contrast to these more involved models, our model can directly be employed for policy search and outperforms a baseline method in the robot experiment.

am ics

PDF Project Page [BibTex]

PDF Project Page [BibTex]


no image
A New Data Source for Inverse Dynamics Learning

Kappler, D., Meier, F., Ratliff, N., Schaal, S.

In Proceedings IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE, Piscataway, NJ, USA, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), September 2017 (inproceedings)

am

[BibTex]

[BibTex]


no image
Bayesian Regression for Artifact Correction in Electroencephalography

Fiebig, K., Jayaram, V., Hesse, T., Blank, A., Peters, J., Grosse-Wentrup, M.

Proceedings of the 7th Graz Brain-Computer Interface Conference 2017 - From Vision to Reality, pages: 131-136, (Editors: Müller-Putz G.R., Steyrl D., Wriessnegger S. C., Scherer R.), Graz University of Technology, Austria, Graz Brain-Computer Interface Conference, September 2017 (conference)

am ei

DOI [BibTex]

DOI [BibTex]


no image
Investigating Music Imagery as a Cognitive Paradigm for Low-Cost Brain-Computer Interfaces

Grossberger, L., Hohmann, M. R., Peters, J., Grosse-Wentrup, M.

Proceedings of the 7th Graz Brain-Computer Interface Conference 2017 - From Vision to Reality, pages: 160-164, (Editors: Müller-Putz G.R., Steyrl D., Wriessnegger S. C., Scherer R.), Graz University of Technology, Austria, Graz Brain-Computer Interface Conference, September 2017 (conference)

am ei

DOI [BibTex]

DOI [BibTex]


On the relevance of grasp metrics for predicting grasp success
On the relevance of grasp metrics for predicting grasp success

Rubert, C., Kappler, D., Morales, A., Schaal, S., Bohg, J.

In Proceedings of the IEEE/RSJ International Conference of Intelligent Robots and Systems, September 2017 (inproceedings) Accepted

Abstract
We aim to reliably predict whether a grasp on a known object is successful before it is executed in the real world. There is an entire suite of grasp metrics that has already been developed which rely on precisely known contact points between object and hand. However, it remains unclear whether and how they may be combined into a general purpose grasp stability predictor. In this paper, we analyze these questions by leveraging a large scale database of simulated grasps on a wide variety of objects. For each grasp, we compute the value of seven metrics. Each grasp is annotated by human subjects with ground truth stability labels. Given this data set, we train several classification methods to find out whether there is some underlying, non-trivial structure in the data that is difficult to model manually but can be learned. Quantitative and qualitative results show the complexity of the prediction problem. We found that a good prediction performance critically depends on using a combination of metrics as input features. Furthermore, non-parametric and non-linear classifiers best capture the structure in the data.

am

Project Page [BibTex]

Project Page [BibTex]


no image
Local Bayesian Optimization of Motor Skills

Akrour, R., Sorokin, D., Peters, J., Neumann, G.

Proceedings of the 34th International Conference on Machine Learning, 70, pages: 41-50, Proceedings of Machine Learning Research, (Editors: Doina Precup, Yee Whye Teh), PMLR, International Conference on Machine Learning (ICML), August 2017 (conference)

am ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


Combining Model-Based and Model-Free Updates for Trajectory-Centric Reinforcement Learning
Combining Model-Based and Model-Free Updates for Trajectory-Centric Reinforcement Learning

Chebotar, Y., Hausman, K., Zhang, M., Sukhatme, G., Schaal, S., Levine, S.

Proceedings of the 34th International Conference on Machine Learning, 70, Proceedings of Machine Learning Research, (Editors: Doina Precup, Yee Whye Teh), PMLR, International Conference on Machine Learning (ICML), August 2017 (conference)

am

pdf video [BibTex]

pdf video [BibTex]


no image
Stiffness Perception during Pinching and Dissection with Teleoperated Haptic Forceps

Ng, C., Zareinia, K., Sun, Q., Kuchenbecker, K. J.

In Proceedings of the International Symposium on Robot and Human Interactive Communication (RO-MAN), pages: 456-463, Lisbon, Portugal, August 2017 (inproceedings)

hi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Towards quantifying dynamic human-human physical interactions for robot assisted stroke therapy

Mohan, M., Mendonca, R., Johnson, M. J.

In Proceedings of the IEEE International Conference on Rehabilitation Robotics (ICORR), London, UK, July 2017 (inproceedings)

Abstract
Human-Robot Interaction is a prominent field of robotics today. Knowledge of human-human physical interaction can prove vital in creating dynamic physical interactions between human and robots. Most of the current work in studying this interaction has been from a haptic perspective. Through this paper, we present metrics that can be used to identify if a physical interaction occurred between two people using kinematics. We present a simple Activity of Daily Living (ADL) task which involves a simple interaction. We show that we can use these metrics to successfully identify interactions.

hi

DOI [BibTex]

DOI [BibTex]


no image
Design of a Parallel Continuum Manipulator for 6-DOF Fingertip Haptic Display

Young, E. M., Kuchenbecker, K. J.

In Proceedings of the IEEE World Haptics Conference (WHC), pages: 599-604, Munich, Germany, June 2017, Finalist for best poster paper (inproceedings)

Abstract
Despite rapid advancements in the field of fingertip haptics, rendering tactile cues with six degrees of freedom (6 DOF) remains an elusive challenge. In this paper, we investigate the potential of displaying fingertip haptic sensations with a 6-DOF parallel continuum manipulator (PCM) that mounts to the user's index finger and moves a contact platform around the fingertip. Compared to traditional mechanisms composed of rigid links and discrete joints, PCMs have the potential to be strong, dexterous, and compact, but they are also more complicated to design. We define the design space of 6-DOF parallel continuum manipulators and outline a process for refining such a device for fingertip haptic applications. Following extensive simulation, we obtain 12 designs that meet our specifications, construct a manually actuated prototype of one such design, and evaluate the simulation's ability to accurately predict the prototype's motion. Finally, we demonstrate the range of deliverable fingertip tactile cues, including a normal force into the finger and shear forces tangent to the finger at three extreme points on the boundary of the fingertip.

hi

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
High Magnitude Unidirectional Haptic Force Display Using a Motor/Brake Pair and a Cable

Hu, S., Kuchenbecker, K. J.

In Proceedings of the IEEE World Haptics Conference (WHC), pages: 394-399, Munich, Germany, June 2017 (inproceedings)

Abstract
Clever electromechanical design is required to make the force feedback delivered by a kinesthetic haptic interface both strong and safe. This paper explores a onedimensional haptic force display that combines a DC motor and a magnetic particle brake on the same shaft. Rather than a rigid linkage, a spooled cable connects the user to the actuators to enable a large workspace, reduce the moving mass, and eliminate the sticky residual force from the brake. This design combines the high torque/power ratio of the brake and the active output capabilities of the motor to provide a wider range of forces than can be achieved with either actuator alone. A prototype of this device was built, its performance was characterized, and it was used to simulate constant force sources and virtual springs and dampers. Compared to the conventional design of using only a motor, the hybrid device can output higher unidirectional forces at the expense of free space feeling less free.

hi

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
A Stimulus-Response Model Of Therapist-Patient Interactions In Task-Oriented Stroke Therapy Can Guide Robot-Patient Interactions

Johnson, M., Mohan, M., Mendonca, R.

In Proceedings of the Annual Rehabilitation Engineering and Assistive Technology Society of North America (RESNA) Conference, New Orleans, USA, June 2017 (inproceedings)

Abstract
Current robot-patient interactions do not accurately model therapist-patient interactions in task-oriented stroke therapy. We analyzed patient-therapist interactions in task-oriented stroke therapy captured in 8 videos. We developed a model of the interaction between a patient and a therapist that can be overlaid on a stimulus-response paradigm where the therapist and the patient take on a set of acting states or roles and are motivated to move from one role to another when certain physical or verbal stimuli or cues are sensed and received. We examined how the model varies across 8 activities of daily living tasks and map this to a possible model for robot-patient interaction.

hi

link (url) [BibTex]

link (url) [BibTex]


no image
A Wrist-Squeezing Force-Feedback System for Robotic Surgery Training

Brown, J. D., Fernandez, J. N., Cohen, S. P., Kuchenbecker, K. J.

In Proceedings of the IEEE World Haptics Conference (WHC), pages: 107-112, Munich, Germany, June 2017 (inproceedings)

Abstract
Over time, surgical trainees learn to compensate for the lack of haptic feedback in commercial robotic minimally invasive surgical systems. Incorporating touch cues into robotic surgery training could potentially shorten this learning process if the benefits of haptic feedback were sustained after it is removed. In this paper, we develop a wrist-squeezing haptic feedback system and evaluate whether it holds the potential to train novice da Vinci users to reduce the force they exert on a bimanual inanimate training task. Subjects were randomly divided into two groups according to a multiple baseline experimental design. Each of the ten participants moved a ring along a curved wire nine times while the haptic feedback was conditionally withheld, provided, and withheld again. The realtime tactile feedback of applied force magnitude significantly reduced the integral of the force produced by the da Vinci tools on the task materials, and this result remained even when the haptic feedback was removed. Overall, our findings suggest that wrist-squeezing force feedback can play an essential role in helping novice trainees learn to minimize the force they exert with a surgical robot.

hi

DOI [BibTex]

DOI [BibTex]


no image
Handling Scan-Time Parameters in Haptic Surface Classification

Burka, A., Kuchenbecker, K. J.

In Proceedings of the IEEE World Haptics Conference (WHC), pages: 424-429, Munich, Germany, June 2017 (inproceedings)

hi

DOI Project Page [BibTex]

DOI Project Page [BibTex]


Model-Based Policy Search for Automatic Tuning of Multivariate PID Controllers
Model-Based Policy Search for Automatic Tuning of Multivariate PID Controllers

Doerr, A., Nguyen-Tuong, D., Marco, A., Schaal, S., Trimpe, S.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pages: 5295-5301, IEEE, Piscataway, NJ, USA, IEEE International Conference on Robotics and Automation (ICRA), May 2017 (inproceedings)

am ics

PDF arXiv DOI Project Page [BibTex]

PDF arXiv DOI Project Page [BibTex]


Learning Feedback Terms for Reactive Planning and Control
Learning Feedback Terms for Reactive Planning and Control

Rai, A., Sutanto, G., Schaal, S., Meier, F.

Proceedings 2017 IEEE International Conference on Robotics and Automation (ICRA), IEEE, Piscataway, NJ, USA, IEEE International Conference on Robotics and Automation (ICRA), May 2017 (conference)

am

pdf video [BibTex]

pdf video [BibTex]


Virtual vs. {R}eal: Trading Off Simulations and Physical Experiments in Reinforcement Learning with {B}ayesian Optimization
Virtual vs. Real: Trading Off Simulations and Physical Experiments in Reinforcement Learning with Bayesian Optimization

Marco, A., Berkenkamp, F., Hennig, P., Schoellig, A. P., Krause, A., Schaal, S., Trimpe, S.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pages: 1557-1563, IEEE, Piscataway, NJ, USA, IEEE International Conference on Robotics and Automation (ICRA), May 2017 (inproceedings)

am ics pn

PDF arXiv ICRA 2017 Spotlight presentation Virtual vs. Real - Video explanation DOI Project Page [BibTex]

PDF arXiv ICRA 2017 Spotlight presentation Virtual vs. Real - Video explanation DOI Project Page [BibTex]


no image
Proton 2: Increasing the Sensitivity and Portability of a Visuo-haptic Surface Interaction Recorder

Burka, A., Rajvanshi, A., Allen, S., Kuchenbecker, K. J.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pages: 439-445, Singapore, May 2017 (inproceedings)

Abstract
The Portable Robotic Optical/Tactile ObservatioN PACKage (PROTONPACK, or Proton for short) is a new handheld visuo-haptic sensing system that records surface interactions. We previously demonstrated system calibration and a classification task using external motion tracking. This paper details improvements in surface classification performance and removal of the dependence on external motion tracking, necessary before embarking on our goal of gathering a vast surface interaction dataset. Two experiments were performed to refine data collection parameters. After adjusting the placement and filtering of the Proton's high-bandwidth accelerometers, we recorded interactions between two differently-sized steel tooling ball end-effectors (diameter 6.35 and 9.525 mm) and five surfaces. Using features based on normal force, tangential force, end-effector speed, and contact vibration, we trained multi-class SVMs to classify the surfaces using 50 ms chunks of data from each end-effector. Classification accuracies of 84.5% and 91.5% respectively were achieved on unseen test data, an improvement over prior results. In parallel, we pursued on-board motion tracking, using the Proton's camera and fiducial markers. Motion tracks from the external and onboard trackers agree within 2 mm and 0.01 rad RMS, and the accuracy decreases only slightly to 87.7% when using onboard tracking for the 9.525 mm end-effector. These experiments indicate that the Proton 2 is ready for portable data collection.

hi

DOI Project Page [BibTex]

DOI Project Page [BibTex]

2011


no image
STOMP: Stochastic trajectory optimization for motion planning

Kalakrishnan, M., Chitta, S., Theodorou, E., Pastor, P., Schaal, S.

In IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China, May 9-13, 2011, clmc (inproceedings)

Abstract
We present a new approach to motion planning using a stochastic trajectory optimization framework. The approach relies on generating noisy trajectories to explore the space around an initial (possibly infeasible) trajectory, which are then combined to produced an updated trajectory with lower cost. A cost function based on a combination of obstacle and smoothness cost is optimized in each iteration. No gradient information is required for the particular optimization algorithm that we use and so general costs for which derivatives may not be available (e.g. costs corresponding to constraints and motor torques) can be included in the cost function. We demonstrate the approach both in simulation and on a dual-arm mobile manipulation system for unconstrained and constrained tasks. We experimentally show that the stochastic nature of STOMP allows it to overcome local minima that gradient-based optimizers like CHOMP can get stuck in.

am

link (url) Project Page [BibTex]

2011


link (url) Project Page [BibTex]


no image
Development of a Low-Pressure Fluidic Servo-Valve for Wearable Haptic Interfaces and Lightweight Robotic Systems"

Folgheraiter, M., Jordan, M., Benitez, L. M. V., Grimminger, F., Schmidt, S., Albiez, J., Kirchner, F.

In Informatics in Control, Automation and Robotics, pages: 239-252, Springer Berlin Heidelberg, Berlin, Heidelberg, 2011 (inproceedings)

Abstract
This document presents a low-pressure servo-valve specifically designed for haptic interfaces and lightweight robotic applications. The device is able to work with hydraulic and pneumatic fluidic sources, operating within a pressure range of (0{\thinspace}−{\thinspace}50 {\textperiodcentered}105Pa). All sensors and electronics were integrated inside the body of the valve, reducing the need for external circuits. Positioning repeatability as well as the capability to fine modulate the hydraulic flow were measured and verified. Furthermore, the static and dynamic behavior of the valve were evaluated for different working conditions, and a non-linear model identified using a recursive Hammerstein-Wiener parameter adaptation algorithm.

am

DOI [BibTex]

DOI [BibTex]


no image
Path Integral Control and Bounded Rationality

Braun, D. A., Ortega, P. A., Theodorou, E., Schaal, S.

In IEEE Symposium on Adaptive Dynamic Programming And Reinforcement Learning (ADPRL), 2011, clmc (inproceedings)

Abstract
Path integral methods [7], [15],[1] have recently been shown to be applicable to a very general class of optimal control problems. Here we examine the path integral formalism from a decision-theoretic point of view, since an optimal controller can always be regarded as an instance of a perfectly rational decision-maker that chooses its actions so as to maximize its expected utility [8]. The problem with perfect rationality is, however, that finding optimal actions is often very difficult due to prohibitive computational resource costs that are not taken into account. In contrast, a bounded rational decision-maker has only limited resources and therefore needs to strike some compromise between the desired utility and the required resource costs [14]. In particular, we suggest an information-theoretic measure of resource costs that can be derived axiomatically [11]. As a consequence we obtain a variational principle for choice probabilities that trades off maximizing a given utility criterion and avoiding resource costs that arise due to deviating from initially given default choice probabilities. The resulting bounded rational policies are in general probabilistic. We show that the solutions found by the path integral formalism are such bounded rational policies. Furthermore, we show that the same formalism generalizes to discrete control problems, leading to linearly solvable bounded rational control policies in the case of Markov systems. Importantly, Bellman?s optimality principle is not presupposed by this variational principle, but it can be derived as a limit case. This suggests that the information- theoretic formalization of bounded rationality might serve as a general principle in control design that unifies a number of recently reported approximate optimal control methods both in the continuous and discrete domain.

am

PDF [BibTex]

PDF [BibTex]


no image
Skill learning and task outcome prediction for manipulation

Pastor, P., Kalakrishnan, M., Chitta, S., Theodorou, E., Schaal, S.

In IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China, May 9-13, 2011, clmc (inproceedings)

Abstract
Learning complex motor skills for real world tasks is a hard problem in robotic manipulation that often requires painstaking manual tuning and design by a human expert. In this work, we present a Reinforcement Learning based approach to acquiring new motor skills from demonstration. Our approach allows the robot to learn fine manipulation skills and significantly improve its success rate and skill level starting from a possibly coarse demonstration. Our approach aims to incorporate task domain knowledge, where appropriate, by working in a space consistent with the constraints of a specific task. In addition, we also present an approach to using sensor feedback to learn a predictive model of the task outcome. This allows our system to learn the proprioceptive sensor feedback needed to monitor subsequent executions of the task online and abort execution in the event of predicted failure. We illustrate our approach using two example tasks executed with the PR2 dual-arm robot: a straight and accurate pool stroke and a box flipping task using two chopsticks as tools.

am

link (url) Project Page Project Page [BibTex]

link (url) Project Page Project Page [BibTex]


no image
An Iterative Path Integral Stochastic Optimal Control Approach for Learning Robotic Tasks

Theodorou, E., Stulp, F., Buchli, J., Schaal, S.

In Proceedings of the 18th World Congress of the International Federation of Automatic Control, 2011, clmc (inproceedings)

Abstract
Recent work on path integral stochastic optimal control theory Theodorou et al. (2010a); Theodorou (2011) has shown promising results in planning and control of nonlinear systems in high dimensional state spaces. The path integral control framework relies on the transformation of the nonlinear Hamilton Jacobi Bellman (HJB) partial differential equation (PDE) into a linear PDE and the approximation of its solution via the use of the Feynman Kac lemma. In this work, we are reviewing the generalized version of path integral stochastic optimal control formalism Theodorou et al. (2010a), used for optimal control and planing of stochastic dynamical systems with state dependent control and diffusion matrices. Moreover we present the iterative path integral control approach, the so called Policy Improvement with Path Integrals or (PI2 ) which is capable of scaling in high dimensional robotic control problems. Furthermore we present a convergence analysis of the proposed algorithm and we apply the proposed framework to a variety of robotic tasks. Finally with the goal to perform locomotion the iterative path integral control is applied for learning nonlinear limit cycle attractors with adjustable land scape.

am

PDF [BibTex]

PDF [BibTex]


no image
Learning Force Control Policies for Compliant Manipulation

Kalakrishnan, M., Righetti, L., Pastor, P., Schaal, S.

In 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages: 4639-4644, IEEE, San Francisco, USA, sep 2011 (inproceedings)

Abstract
Developing robots capable of fine manipulation skills is of major importance in order to build truly assistive robots. These robots need to be compliant in their actuation and control in order to operate safely in human environments. Manipulation tasks imply complex contact interactions with the external world, and involve reasoning about the forces and torques to be applied. Planning under contact conditions is usually impractical due to computational complexity, and a lack of precise dynamics models of the environment. We present an approach to acquiring manipulation skills on compliant robots through reinforcement learning. The initial position control policy for manipulation is initialized through kinesthetic demonstration. We augment this policy with a force/torque profile to be controlled in combination with the position trajectories. We use the Policy Improvement with Path Integrals (PI2) algorithm to learn these force/torque profiles by optimizing a cost function that measures task success. We demonstrate our approach on the Barrett WAM robot arm equipped with a 6-DOF force/torque sensor on two different manipulation tasks: opening a door with a lever door handle, and picking up a pen off the table. We show that the learnt force control policies allow successful, robust execution of the tasks.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Control of legged robots with optimal distribution of contact forces

Righetti, L., Buchli, J., Mistry, M., Schaal, S.

In 2011 11th IEEE-RAS International Conference on Humanoid Robots, pages: 318-324, IEEE, Bled, Slovenia, 2011 (inproceedings)

Abstract
The development of agile and safe humanoid robots require controllers that guarantee both high tracking performance and compliance with the environment. More specifically, the control of contact interaction is of crucial importance for robots that will actively interact with their environment. Model-based controllers such as inverse dynamics or operational space control are very appealing as they offer both high tracking performance and compliance. However, while widely used for fully actuated systems such as manipulators, they are not yet standard controllers for legged robots such as humanoids. Indeed such robots are fundamentally different from manipulators as they are underactuated due to their floating-base and subject to switching contact constraints. In this paper we present an inverse dynamics controller for legged robots that use torque redundancy to create an optimal distribution of contact constraints. The resulting controller is able to minimize, given a desired motion, any quadratic cost of the contact constraints at each instant of time. In particular we show how this can be used to minimize tangential forces during locomotion, therefore significantly improving the locomotion of legged robots on difficult terrains. In addition to the theoretical result, we present simulations of a humanoid and a quadruped robot, as well as experiments on a real quadruped robot that demonstrate the advantages of the controller.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Learning Motion Primitive Goals for Robust Manipulation

Stulp, F., Theodorou, E., Kalakrishnan, M., Pastor, P., Righetti, L., Schaal, S.

In IEEE/RSJ International Conference on Intelligent Robots and Systems, pages: 325-331, IEEE, San Francisco, USA, sep 2011 (inproceedings)

Abstract
Applying model-free reinforcement learning to manipulation remains challenging for several reasons. First, manipulation involves physical contact, which causes discontinuous cost functions. Second, in manipulation, the end-point of the movement must be chosen carefully, as it represents a grasp which must be adapted to the pose and shape of the object. Finally, there is uncertainty in the object pose, and even the most carefully planned movement may fail if the object is not at the expected position. To address these challenges we 1) present a simplified, computationally more efficient version of our model-free reinforcement learning algorithm PI2; 2) extend PI2 so that it simultaneously learns shape parameters and goal parameters of motion primitives; 3) use shape and goal learning to acquire motion primitives that are robust to object pose uncertainty. We evaluate these contributions on a manipulation platform consisting of a 7-DOF arm with a 4-DOF hand.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Inverse Dynamics Control of Floating-Base Robots with External Constraints: a Unified View

Righetti, L., Buchli, J., Mistry, M., Schaal, S.

In 2011 IEEE International Conference on Robotics and Automation, pages: 1085-1090, IEEE, Shanghai, China, 2011 (inproceedings)

Abstract
Inverse dynamics controllers and operational space controllers have proved to be very efficient for compliant control of fully actuated robots such as fixed base manipulators. However legged robots such as humanoids are inherently different as they are underactuated and subject to switching external contact constraints. Recently several methods have been proposed to create inverse dynamics controllers and operational space controllers for these robots. In an attempt to compare these different approaches, we develop a general framework for inverse dynamics control and show that these methods lead to very similar controllers. We are then able to greatly simplify recent whole-body controllers based on operational space approaches using kinematic projections, bringing them closer to efficient practical implementations. We also generalize these controllers such that they can be optimal under an arbitrary quadratic cost in the commands.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Movement segmentation using a primitive library

Meier, F., Theodorou, E., Stulp, F., Schaal, S.

In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2011), Sept. 25-30, San Francisco, CA, 2011, clmc (inproceedings)

Abstract
Segmenting complex movements into a sequence of primitives remains a difficult problem with many applications in the robotics and vision communities. In this work, we show how the movement segmentation problem can be reduced to a sequential movement recognition problem. To this end, we reformulate the orig-inal Dynamic Movement Primitive (DMP) formulation as a linear dynamical sys-tem with control inputs. Based on this new formulation, we develop an Expecta-tion-Maximization algorithm to estimate the duration and goal position of a par-tially observed trajectory. With the help of this algorithm and the assumption that a library of movement primitives is present, we present a movement seg-mentation framework. We illustrate the usefulness of the new DMP formulation on the two applications of online movement recognition and movement segmen-tation.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Online movement adaptation based on previous sensor experiences

Pastor, P., Righetti, L., Kalakrishnan, M., Schaal, S.

In 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages: 365-371, IEEE, San Francisco, USA, sep 2011 (inproceedings)

Abstract
Personal robots can only become widespread if they are capable of safely operating among humans. In uncertain and highly dynamic environments such as human households, robots need to be able to instantly adapt their behavior to unforseen events. In this paper, we propose a general framework to achieve very contact-reactive motions for robotic grasping and manipulation. Associating stereotypical movements to particular tasks enables our system to use previous sensor experiences as a predictive model for subsequent task executions. We use dynamical systems, named Dynamic Movement Primitives (DMPs), to learn goal-directed behaviors from demonstration. We exploit their dynamic properties by coupling them with the measured and predicted sensor traces. This feedback loop allows for online adaptation of the movement plan. Our system can create a rich set of possible motions that account for external perturbations and perception uncertainty to generate truly robust behaviors. As an example, we present an application to grasping with the WAM robot arm.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Additional DOFs and sensors for bio-inspired locomotion: Towards active spine, ankle joints, and feet for a quadruped robot

Kuehn, D., Grimminger, F., Beinersdorf, F., Bernhard, F., Burchardt, A., Schilling, M., Simnofske, M., Stark, T., Zenzes, M., Kirchner, F.

In 2011 IEEE International Conference on Robotics and Biomimetics, pages: 2780-2786, December 2011 (inproceedings)

am

DOI [BibTex]

DOI [BibTex]