Header logo is


2018


Thumb xl screenshot from 2018 06 15 22 59 30
A Value-Driven Eldercare Robot: Virtual and Physical Instantiations of a Case-Supported Principle-Based Behavior Paradigm

Anderson, M., Anderson, S., Berenz, V.

Proceedings of the IEEE, pages: 1,15, October 2018 (article)

Abstract
In this paper, a case-supported principle-based behavior paradigm is proposed to help ensure ethical behavior of autonomous machines. We argue that ethically significant behavior of autonomous systems should be guided by explicit ethical principles determined through a consensus of ethicists. Such a consensus is likely to emerge in many areas in which autonomous systems are apt to be deployed and for the actions they are liable to undertake. We believe that this is the case since we are more likely to agree on how machines ought to treat us than on how human beings ought to treat one another. Given such a consensus, particular cases of ethical dilemmas where ethicists agree on the ethically relevant features and the right course of action can be used to help discover principles that balance these features when they are in conflict. Such principles not only help ensure ethical behavior of complex and dynamic systems but also can serve as a basis for justification of this behavior. The requirements, methods, implementation, and evaluation components of the paradigm are detailed as well as its instantiation in both a simulated and real robot functioning in the domain of eldercare.

am

link (url) DOI [BibTex]

2018



Thumb xl screenshot from 2017 07 27 17 24 14
Playful: Reactive Programming for Orchestrating Robotic Behavior

Berenz, V., Schaal, S.

IEEE Robotics Automation Magazine, 25(3):49-60, September 2018 (article) In press

Abstract
For many service robots, reactivity to changes in their surroundings is a must. However, developing software suitable for dynamic environments is difficult. Existing robotic middleware allows engineers to design behavior graphs by organizing communication between components. But because these graphs are structurally inflexible, they hardly support the development of complex reactive behavior. To address this limitation, we propose Playful, a software platform that applies reactive programming to the specification of robotic behavior.

am

playful website playful_IEEE_RAM link (url) DOI [BibTex]


Thumb xl screen shot 2018 09 19 at 09.33.59
ClusterNet: Instance Segmentation in RGB-D Images

Shao, L., Tian, Y., Bohg, J.

arXiv, September 2018, Submitted to ICRA'19 (article) Submitted

Abstract
We propose a method for instance-level segmentation that uses RGB-D data as input and provides detailed information about the location, geometry and number of {\em individual\/} objects in the scene. This level of understanding is fundamental for autonomous robots. It enables safe and robust decision-making under the large uncertainty of the real-world. In our model, we propose to use the first and second order moments of the object occupancy function to represent an object instance. We train an hourglass Deep Neural Network (DNN) where each pixel in the output votes for the 3D position of the corresponding object center and for the object's size and pose. The final instance segmentation is achieved through clustering in the space of moments. The object-centric training loss is defined on the output of the clustering. Our method outperforms the state-of-the-art instance segmentation method on our synthesized dataset. We show that our method generalizes well on real-world data achieving visually better segmentation results.

am

link (url) [BibTex]

link (url) [BibTex]


Thumb xl grasping
Leveraging Contact Forces for Learning to Grasp

Merzic, H., Bogdanovic, M., Kappler, D., Righetti, L., Bohg, J.

arXiv, September 2018, Submitted to ICRA'19 (article) Submitted

Abstract
Grasping objects under uncertainty remains an open problem in robotics research. This uncertainty is often due to noisy or partial observations of the object pose or shape. To enable a robot to react appropriately to unforeseen effects, it is crucial that it continuously takes sensor feedback into account. While visual feedback is important for inferring a grasp pose and reaching for an object, contact feedback offers valuable information during manipulation and grasp acquisition. In this paper, we use model-free deep reinforcement learning to synthesize control policies that exploit contact sensing to generate robust grasping under uncertainty. We demonstrate our approach on a multi-fingered hand that exhibits more complex finger coordination than the commonly used two- fingered grippers. We conduct extensive experiments in order to assess the performance of the learned policies, with and without contact sensing. While it is possible to learn grasping policies without contact sensing, our results suggest that contact feedback allows for a significant improvement of grasping robustness under object pose uncertainty and for objects with a complex shape.

am mg

video arXiv [BibTex]

video arXiv [BibTex]


Thumb xl teaser image
Probabilistic Recurrent State-Space Models

Doerr, A., Daniel, C., Schiegg, M., Nguyen-Tuong, D., Schaal, S., Toussaint, M., Trimpe, S.

In Proceedings of the International Conference on Machine Learning (ICML), International Conference on Machine Learning (ICML), July 2018 (inproceedings)

Abstract
State-space models (SSMs) are a highly expressive model class for learning patterns in time series data and for system identification. Deterministic versions of SSMs (e.g., LSTMs) proved extremely successful in modeling complex time-series data. Fully probabilistic SSMs, however, unfortunately often prove hard to train, even for smaller problems. To overcome this limitation, we propose a scalable initialization and training algorithm based on doubly stochastic variational inference and Gaussian processes. In the variational approximation we propose in contrast to related approaches to fully capture the latent state temporal correlations to allow for robust training.

am ics

arXiv pdf Project Page [BibTex]

arXiv pdf Project Page [BibTex]


Thumb xl octo turned
Real-time Perception meets Reactive Motion Generation

(Best Systems Paper Finalists - Amazon Robotics Best Paper Awards in Manipulation)

Kappler, D., Meier, F., Issac, J., Mainprice, J., Garcia Cifuentes, C., Wüthrich, M., Berenz, V., Schaal, S., Ratliff, N., Bohg, J.

IEEE Robotics and Automation Letters, 3(3):1864-1871, July 2018 (article)

Abstract
We address the challenging problem of robotic grasping and manipulation in the presence of uncertainty. This uncertainty is due to noisy sensing, inaccurate models and hard-to-predict environment dynamics. Our approach emphasizes the importance of continuous, real-time perception and its tight integration with reactive motion generation methods. We present a fully integrated system where real-time object and robot tracking as well as ambient world modeling provides the necessary input to feedback controllers and continuous motion optimizers. Specifically, they provide attractive and repulsive potentials based on which the controllers and motion optimizer can online compute movement policies at different time intervals. We extensively evaluate the proposed system on a real robotic platform in four scenarios that exhibit either challenging workspace geometry or a dynamic environment. We compare the proposed integrated system with a more traditional sense-plan-act approach that is still widely used. In 333 experiments, we show the robustness and accuracy of the proposed system.

am

arxiv video video link (url) DOI Project Page [BibTex]


Thumb xl meta learning overview
Online Learning of a Memory for Learning Rates

(nominated for best paper award)

Meier, F., Kappler, D., Schaal, S.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) 2018, IEEE, International Conference on Robotics and Automation, May 2018, accepted (inproceedings)

Abstract
The promise of learning to learn for robotics rests on the hope that by extracting some information about the learning process itself we can speed up subsequent similar learning tasks. Here, we introduce a computationally efficient online meta-learning algorithm that builds and optimizes a memory model of the optimal learning rate landscape from previously observed gradient behaviors. While performing task specific optimization, this memory of learning rates predicts how to scale currently observed gradients. After applying the gradient scaling our meta-learner updates its internal memory based on the observed effect its prediction had. Our meta-learner can be combined with any gradient-based optimizer, learns on the fly and can be transferred to new optimization tasks. In our evaluations we show that our meta-learning algorithm speeds up learning of MNIST classification and a variety of learning control tasks, either in batch or online learning settings.

am

pdf video code [BibTex]

pdf video code [BibTex]


Thumb xl learning ct w asm block diagram detailed
Learning Sensor Feedback Models from Demonstrations via Phase-Modulated Neural Networks

Sutanto, G., Su, Z., Schaal, S., Meier, F.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) 2018, IEEE, International Conference on Robotics and Automation, May 2018 (inproceedings)

am

pdf video [BibTex]

pdf video [BibTex]


no image
Distributed Event-Based State Estimation for Networked Systems: An LMI Approach

Muehlebach, M., Trimpe, S.

IEEE Transactions on Automatic Control, 63(1):269-276, January 2018 (article)

am ics

arXiv (extended version) DOI Project Page [BibTex]

arXiv (extended version) DOI Project Page [BibTex]


Thumb xl img
Combining learned and analytical models for predicting action effects

Kloss, A., Schaal, S., Bohg, J.

arXiv, 2018 (article) Submitted

Abstract
One of the most basic skills a robot should possess is predicting the effect of physical interactions with objects in the environment. This enables optimal action selection to reach a certain goal state. Traditionally, dynamics are approximated by physics-based analytical models. These models rely on specific state representations that may be hard to obtain from raw sensory data, especially if no knowledge of the object shape is assumed. More recently, we have seen learning approaches that can predict the effect of complex physical interactions directly from sensory input. It is however an open question how far these models generalize beyond their training data. In this work, we investigate the advantages and limitations of neural network based learning approaches for predicting the effects of actions based on sensory input and show how analytical and learned models can be combined to leverage the best of both worlds. As physical interaction task, we use planar pushing, for which there exists a well-known analytical model and a large real-world dataset. We propose to use a convolutional neural network to convert raw depth images or organized point clouds into a suitable representation for the analytical model and compare this approach to using neural networks for both, perception and prediction. A systematic evaluation of the proposed approach on a very large real-world dataset shows two main advantages of the hybrid architecture. Compared to a pure neural network, it significantly (i) reduces required training data and (ii) improves generalization to novel physical interaction.

am

arXiv pdf link (url) [BibTex]


no image
On Time Optimization of Centroidal Momentum Dynamics

Ponton, B., Herzog, A., Del Prete, A., Schaal, S., Righetti, L.

In 2018 IEEE International Conference on Robotics and Automation (ICRA), pages: 5776-5782, IEEE, Brisbane, Australia, May 2018 (inproceedings)

Abstract
Recently, the centroidal momentum dynamics has received substantial attention to plan dynamically consistent motions for robots with arms and legs in multi-contact scenarios. However, it is also non convex which renders any optimization approach difficult and timing is usually kept fixed in most trajectory optimization techniques to not introduce additional non convexities to the problem. But this can limit the versatility of the algorithms. In our previous work, we proposed a convex relaxation of the problem that allowed to efficiently compute momentum trajectories and contact forces. However, our approach could not minimize a desired angular momentum objective which seriously limited its applicability. Noticing that the non-convexity introduced by the time variables is of similar nature as the centroidal dynamics one, we propose two convex relaxations to the problem based on trust regions and soft constraints. The resulting approaches can compute time-optimized dynamically consistent trajectories sufficiently fast to make the approach realtime capable. The performance of the algorithm is demonstrated in several multi-contact scenarios for a humanoid robot. In particular, we show that the proposed convex relaxation of the original problem finds solutions that are consistent with the original non-convex problem and illustrate how timing optimization allows to find motion plans that would be difficult to plan with fixed timing † †Implementation details and demos can be found in the source code available at https://git-amd.tuebingen.mpg.de/bponton/timeoptimization.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Unsupervised Contact Learning for Humanoid Estimation and Control

Rotella, N., Schaal, S., Righetti, L.

In 2018 IEEE International Conference on Robotics and Automation (ICRA), pages: 411-417, IEEE, Brisbane, Australia, 2018 (inproceedings)

Abstract
This work presents a method for contact state estimation using fuzzy clustering to learn contact probability for full, six-dimensional humanoid contacts. The data required for training is solely from proprioceptive sensors - endeffector contact wrench sensors and inertial measurement units (IMUs) - and the method is completely unsupervised. The resulting cluster means are used to efficiently compute the probability of contact in each of the six endeffector degrees of freedom (DoFs) independently. This clustering-based contact probability estimator is validated in a kinematics-based base state estimator in a simulation environment with realistic added sensor noise for locomotion over rough, low-friction terrain on which the robot is subject to foot slip and rotation. The proposed base state estimator which utilizes these six DoF contact probability estimates is shown to perform considerably better than that which determines kinematic contact constraints purely based on measured normal force.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Learning Task-Specific Dynamics to Improve Whole-Body Control

Gams, A., Mason, S., Ude, A., Schaal, S., Righetti, L.

In Hua, IEEE, Beijing, China, November 2018 (inproceedings)

Abstract
In task-based inverse dynamics control, reference accelerations used to follow a desired plan can be broken down into feedforward and feedback trajectories. The feedback term accounts for tracking errors that are caused from inaccurate dynamic models or external disturbances. On underactuated, free-floating robots, such as humanoids, high feedback terms can be used to improve tracking accuracy; however, this can lead to very stiff behavior or poor tracking accuracy due to limited control bandwidth. In this paper, we show how to reduce the required contribution of the feedback controller by incorporating learned task-space reference accelerations. Thus, we i) improve the execution of the given specific task, and ii) offer the means to reduce feedback gains, providing for greater compliance of the system. With a systematic approach we also reduce heuristic tuning of the model parameters and feedback gains, often present in real-world experiments. In contrast to learning task-specific joint-torques, which might produce a similar effect but can lead to poor generalization, our approach directly learns the task-space dynamics of the center of mass of a humanoid robot. Simulated and real-world results on the lower part of the Sarcos Hermes humanoid robot demonstrate the applicability of the approach.

am mg

link (url) [BibTex]

link (url) [BibTex]


no image
An MPC Walking Framework With External Contact Forces

Mason, S., Rotella, N., Schaal, S., Righetti, L.

In 2018 IEEE International Conference on Robotics and Automation (ICRA), pages: 1785-1790, IEEE, Brisbane, Australia, May 2018 (inproceedings)

Abstract
In this work, we present an extension to a linear Model Predictive Control (MPC) scheme that plans external contact forces for the robot when given multiple contact locations and their corresponding friction cone. To this end, we set up a two-step optimization problem. In the first optimization, we compute the Center of Mass (CoM) trajectory, foot step locations, and introduce slack variables to account for violating the imposed constraints on the Zero Moment Point (ZMP). We then use the slack variables to trigger the second optimization, in which we calculate the optimal external force that compensates for the ZMP tracking error. This optimization considers multiple contacts positions within the environment by formulating the problem as a Mixed Integer Quadratic Program (MIQP) that can be solved at a speed between 100-300 Hz. Once contact is created, the MIQP reduces to a single Quadratic Program (QP) that can be solved in real-time ({\textless}; 1kHz). Simulations show that the presented walking control scheme can withstand disturbances 2-3× larger with the additional force provided by a hand contact.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]

2010


no image
Reinforcement learning of full-body humanoid motor skills

Stulp, F., Buchli, J., Theodorou, E., Schaal, S.

In Humanoid Robots (Humanoids), 2010 10th IEEE-RAS International Conference on, pages: 405-410, December 2010, clmc (inproceedings)

Abstract
Applying reinforcement learning to humanoid robots is challenging because humanoids have a large number of degrees of freedom and state and action spaces are continuous. Thus, most reinforcement learning algorithms would become computationally infeasible and require a prohibitive amount of trials to explore such high-dimensional spaces. In this paper, we present a probabilistic reinforcement learning approach, which is derived from the framework of stochastic optimal control and path integrals. The algorithm, called Policy Improvement with Path Integrals (PI2), has a surprisingly simple form, has no open tuning parameters besides the exploration noise, is model-free, and performs numerically robustly in high dimensional learning problems. We demonstrate how PI2 is able to learn full-body motor skills on a 34-DOF humanoid robot. To demonstrate the generality of our approach, we also apply PI2 in the context of variable impedance control, where both planned trajectories and gain schedules for each joint are optimized simultaneously.

am

link (url) [BibTex]

2010


link (url) [BibTex]


no image
Relative Entropy Policy Search

Peters, J., Mülling, K., Altun, Y.

In Proceedings of the Twenty-Fourth National Conference on Artificial Intelligence, pages: 1607-1612, (Editors: Fox, M. , D. Poole), AAAI Press, Menlo Park, CA, USA, Twenty-Fourth National Conference on Artificial Intelligence (AAAI-10), July 2010 (inproceedings)

Abstract
Policy search is a successful approach to reinforcement learning. However, policy improvements often result in the loss of information. Hence, it has been marred by premature convergence and implausible solutions. As first suggested in the context of covariant policy gradients (Bagnell and Schneider 2003), many of these problems may be addressed by constraining the information loss. In this paper, we continue this path of reasoning and suggest the Relative Entropy Policy Search (REPS) method. The resulting method differs significantly from previous policy gradient approaches and yields an exact update step. It works well on typical reinforcement learning benchmark problems.

am ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Reinforcement learning of motor skills in high dimensions: A path integral approach

Theodorou, E., Buchli, J., Schaal, S.

In Robotics and Automation (ICRA), 2010 IEEE International Conference on, pages: 2397-2403, May 2010, clmc (inproceedings)

Abstract
Reinforcement learning (RL) is one of the most general approaches to learning control. Its applicability to complex motor systems, however, has been largely impossible so far due to the computational difficulties that reinforcement learning encounters in high dimensional continuous state-action spaces. In this paper, we derive a novel approach to RL for parameterized control policies based on the framework of stochastic optimal control with path integrals. While solidly grounded in optimal control theory and estimation theory, the update equations for learning are surprisingly simple and have no danger of numerical instabilities as neither matrix inversions nor gradient learning rates are required. Empirical evaluations demonstrate significant performance improvements over gradient-based policy learning and scalability to high-dimensional control problems. Finally, a learning experiment on a robot dog illustrates the functionality of our algorithm in a real-world scenario. We believe that our new algorithm, Policy Improvement with Path Integrals (PI2), offers currently one of the most efficient, numerically robust, and easy to implement algorithms for RL in robotics.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Inverse dynamics control of floating base systems using orthogonal decomposition

Mistry, M., Buchli, J., Schaal, S.

In Robotics and Automation (ICRA), 2010 IEEE International Conference on, pages: 3406-3412, May 2010, clmc (inproceedings)

Abstract
Model-based control methods can be used to enable fast, dexterous, and compliant motion of robots without sacrificing control accuracy. However, implementing such techniques on floating base robots, e.g., humanoids and legged systems, is non-trivial due to under-actuation, dynamically changing constraints from the environment, and potentially closed loop kinematics. In this paper, we show how to compute the analytically correct inverse dynamics torques for model-based control of sufficiently constrained floating base rigid-body systems, such as humanoid robots with one or two feet in contact with the environment. While our previous inverse dynamics approach relied on an estimation of contact forces to compute an approximate inverse dynamics solution, here we present an analytically correct solution by using an orthogonal decomposition to project the robot dynamics onto a reduced dimensional space, independent of contact forces. We demonstrate the feasibility and robustness of our approach on a simulated floating base bipedal humanoid robot and an actual robot dog locomoting over rough terrain.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Fast, robust quadruped locomotion over challenging terrain

Kalakrishnan, M., Buchli, J., Pastor, P., Mistry, M., Schaal, S.

In Robotics and Automation (ICRA), 2010 IEEE International Conference on, pages: 2665-2670, May 2010, clmc (inproceedings)

Abstract
We present a control architecture for fast quadruped locomotion over rough terrain. We approach the problem by decomposing it into many sub-systems, in which we apply state-of-the-art learning, planning, optimization and control techniques to achieve robust, fast locomotion. Unique features of our control strategy include: (1) a system that learns optimal foothold choices from expert demonstration using terrain templates, (2) a body trajectory optimizer based on the Zero-Moment Point (ZMP) stability criterion, and (3) a floating-base inverse dynamics controller that, in conjunction with force control, allows for robust, compliant locomotion over unperceived obstacles. We evaluate the performance of our controller by testing it on the LittleDog quadruped robot, over a wide variety of rough terrain of varying difficulty levels. We demonstrate the generalization ability of this controller by presenting test results from an independent external test team on terrains that have never been shown to us.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Policy learning algorithmis for motor learning (Algorithmen zum automatischen Erlernen von Motorfähigkigkeiten)

Peters, J., Kober, J., Schaal, S.

Automatisierungstechnik, 58(12):688-694, 2010, clmc (article)

Abstract
Robot learning methods which allow au- tonomous robots to adapt to novel situations have been a long standing vision of robotics, artificial intelligence, and cognitive sciences. However, to date, learning techniques have yet to ful- fill this promise as only few methods manage to scale into the high-dimensional domains of manipulator robotics, or even the new upcoming trend of humanoid robotics. If possible, scaling was usually only achieved in precisely pre-structured domains. In this paper, we investigate the ingredients for a general ap- proach policy learning with the goal of an application to motor skill refinement in order to get one step closer towards human- like performance. For doing so, we study two major components for such an approach, i. e., firstly, we study policy learning algo- rithms which can be applied in the general setting of motor skill learning, and, secondly, we study a theoretically well-founded general approach to representing the required control structu- res for task representation and execution.

am

link (url) [BibTex]


no image
A Bayesian approach to nonlinear parameter identification for rigid-body dynamics

Ting, J., DSouza, A., Schaal, S.

Neural Networks, 2010, clmc (article)

Abstract
For complex robots such as humanoids, model-based control is highly beneficial for accurate tracking while keeping negative feedback gains low for compliance. However, in such multi degree-of-freedom lightweight systems, conventional identification of rigid body dynamics models using CAD data and actuator models is inaccurate due to unknown nonlinear robot dynamic effects. An alternative method is data-driven parameter estimation, but significant noise in measured and inferred variables affects it adversely. Moreover, standard estimation procedures may give physically inconsistent results due to unmodeled nonlinearities or insufficiently rich data. This paper addresses these problems, proposing a Bayesian system identification technique for linear or piecewise linear systems. Inspired by Factor Analysis regression, we develop a computationally efficient variational Bayesian regression algorithm that is robust to ill-conditioned data, automatically detects relevant features, and identifies input and output noise. We evaluate our approach on rigid body parameter estimation for various robotic systems, achieving an error of up to three times lower than other state-of-the-art machine learning methods.

am

link (url) [BibTex]


no image
A first optimal control solution for a complex, nonlinear, tendon driven neuromuscular finger model

Theodorou, E. A., Todorov, E., Valero-Cuevas, F.

Proceedings of the ASME 2010 Summer Bioengineering Conference August 30-September 2, 2010, Naples, Florida, USA, 2010, clmc (article)

Abstract
In this work we present the first constrained stochastic op- timal feedback controller applied to a fully nonlinear, tendon driven index finger model. Our model also takes into account an extensor mechanism, and muscle force-length and force-velocity properties. We show this feedback controller is robust to noise and perturbations to the dynamics, while successfully handling the nonlinearities and high dimensionality of the system. By ex- tending prior methods, we are able to approximate physiological realism by ensuring positivity of neural commands and tendon tensions at all timesthus can, for the first time, use the optimal control framework to predict biologically plausible tendon tensions for a nonlinear neuromuscular finger model. METHODS 1 Muscle Model The rigid-body triple pendulum finger model with slightly viscous joints is actuated by Hill-type muscle models. Joint torques are generated by the seven muscles of the index fin-

am

PDF [BibTex]

PDF [BibTex]


no image
Are reaching movements planned in kinematic or dynamic coordinates?

Ellmer, A., Schaal, S.

In Abstracts of Neural Control of Movement Conference (NCM 2010), Naples, Florida, 2010, 2010, clmc (inproceedings)

Abstract
Whether human reaching movements are planned and optimized in kinematic (task space) or dynamic (joint or muscle space) coordinates is still an issue of debate. The first hypothesis implies that a planner produces a desired end-effector position at each point in time during the reaching movement, whereas the latter hypothesis includes the dynamics of the muscular-skeletal control system to produce a continuous end-effector trajectory. Previous work by Wolpert et al (1995) showed that when subjects were led to believe that their straight reaching paths corresponded to curved paths as shown on a computer screen, participants adapted the true path of their hand such that they would visually perceive a straight line in visual space, despite that they actually produced a curved path. These results were interpreted as supporting the stance that reaching trajectories are planned in kinematic coordinates. However, this experiment could only demonstrate that adaptation to altered paths, i.e. the position of the end-effector, did occur, but not that the precise timing of end-effector position was equally planned, i.e., the trajectory. Our current experiment aims at filling this gap by explicitly testing whether position over time, i.e. velocity, is a property of reaching movements that is planned in kinematic coordinates. In the current experiment, the velocity profiles of cursor movements corresponding to the participant's hand motions were skewed either to the left or to the right; the path itself was left unaltered. We developed an adaptation paradigm, where the skew of the velocity profile was introduced gradually and participants reported no awareness of any manipulation. Preliminary results indicate that the true hand motion of participants did not alter, i.e. there was no adaptation so as to counterbalance the introduced skew. However, for some participants, peak hand velocities were lowered for higher skews, which suggests that participants interpreted the manipulation as mere noise due to variance in their own movement. In summary, for a visuomotor transformation task, the hypothesis of a planned continuous end-effector trajectory predicts adaptation to a modified velocity profile. The current experiment found no systematic adaptation under such transformation, but did demonstrate an effect that is more in accordance that subjects could not perceive the manipulation and rather interpreted as an increase of noise.

am

[BibTex]

[BibTex]


no image
Optimality in Neuromuscular Systems

Theodorou, E. A., Valero-Cuevas, F.

In 32nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2010, clmc (inproceedings)

Abstract
Abstract? We provide an overview of optimal control meth- ods to nonlinear neuromuscular systems and discuss their lim- itations. Moreover we extend current optimal control methods to their application to neuromuscular models with realistically numerous musculotendons; as most prior work is limited to torque-driven systems. Recent work on computational motor control has explored the used of control theory and esti- mation as a conceptual tool to understand the underlying computational principles of neuromuscular systems. After all, successful biological systems regularly meet conditions for stability, robustness and performance for multiple classes of complex tasks. Among a variety of proposed control theory frameworks to explain this, stochastic optimal control has become a dominant framework to the point of being a standard computational technique to reproduce kinematic trajectories of reaching movements (see [12]) In particular, we demonstrate the application of optimal control to a neuromuscular model of the index finger with all seven musculotendons producing a tapping task. Our simu- lations include 1) a muscle model that includes force- length and force-velocity characteristics; 2) an anatomically plausible biomechanical model of the index finger that includes a tendi- nous network for the extensor mechanism and 3) a contact model that is based on a nonlinear spring-damper attached at the end effector of the index finger. We demonstrate that it is feasible to apply optimal control to systems with realistically large state vectors and conclude that, while optimal control is an adequate formalism to create computational models of neuro- musculoskeletal systems, there remain important challenges and limitations that need to be considered and overcome such as contact transitions, curse of dimensionality, and constraints on states and controls.

am

PDF [BibTex]

PDF [BibTex]


no image
Efficient learning and feature detection in high dimensional regression

Ting, J., D’Souza, A., Vijayakumar, S., Schaal, S.

Neural Computation, 22, pages: 831-886, 2010, clmc (article)

Abstract
We present a novel algorithm for efficient learning and feature selection in high- dimensional regression problems. We arrive at this model through a modification of the standard regression model, enabling us to derive a probabilistic version of the well-known statistical regression technique of backfitting. Using the Expectation- Maximization algorithm, along with variational approximation methods to overcome intractability, we extend our algorithm to include automatic relevance detection of the input features. This Variational Bayesian Least Squares (VBLS) approach retains its simplicity as a linear model, but offers a novel statistically robust â??black- boxâ? approach to generalized linear regression with high-dimensional inputs. It can be easily extended to nonlinear regression and classification problems. In particular, we derive the framework of sparse Bayesian learning, e.g., the Relevance Vector Machine, with VBLS at its core, offering significant computational and robustness advantages for this class of methods. We evaluate our algorithm on synthetic and neurophysiological data sets, as well as on standard regression and classification benchmark data sets, comparing it with other competitive statistical approaches and demonstrating its suitability as a drop-in replacement for other generalized linear regression techniques.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Stochastic Differential Dynamic Programming

Theodorou, E., Tassa, Y., Todorov, E.

In the proceedings of American Control Conference (ACC 2010) , 2010, clmc (article)

Abstract
We present a generalization of the classic Differential Dynamic Programming algorithm. We assume the existence of state- and control-dependent process noise, and proceed to derive the second-order expansion of the cost-to-go. Despite having quartic and cubic terms in the initial expression, we show that these vanish, leaving us with the same quadratic structure as standard DDP.

am

PDF [BibTex]

PDF [BibTex]


no image
Learning Policy Improvements with Path Integrals

Theodorou, E. A., Buchli, J., Schaal, S.

In International Conference on Artificial Intelligence and Statistics (AISTATS 2010), 2010, clmc (inproceedings)

Abstract
With the goal to generate more scalable algo- rithms with higher efficiency and fewer open parameters, reinforcement learning (RL) has recently moved towards combining classi- cal techniques from optimal control and dy- namic programming with modern learning techniques from statistical estimation the- ory. In this vein, this paper suggests the framework of stochastic optimal control with path integrals to derive a novel approach to RL with parametrized policies. While solidly grounded in value function estimation and optimal control based on the stochastic Hamilton-Jacobi-Bellman (HJB) equations, policy improvements can be transformed into an approximation problem of a path inte- gral which has no open parameters other than the exploration noise. The resulting algorithm can be conceived of as model- based, semi-model-based, or even model free, depending on how the learning problem is structured. Our new algorithm demon- strates interesting similarities with previous RL research in the framework of proba- bility matching and provides intuition why the slightly heuristically motivated proba- bility matching approach can actually per- form well. Empirical evaluations demon- strate significant performance improvements over gradient-based policy learning and scal- ability to high-dimensional control problems. We believe that Policy Improvement with Path Integrals (PI2) offers currently one of the most efficient, numerically robust, and easy to implement algorithms for RL based on trajectory roll-outs.

am

PDF [BibTex]

PDF [BibTex]


no image
Learning optimal control solutions: a path integral approach

Theodorou, E., Schaal, S.

In Abstracts of Neural Control of Movement Conference (NCM 2010), Naples, Florida, 2010, 2010, clmc (inproceedings)

Abstract
Investigating principles of human motor control in the framework of optimal control has had a long tradition in neural control of movement, and has recently experienced a new surge of investigations. Ideally, optimal control problems are addresses as a reinforcement learning (RL) problem, which would allow to investigate both the process of acquiring an optimal control solution as well as the solution itself. Unfortunately, the applicability of RL to complex neural and biomechanics systems has been largely impossible so far due to the computational difficulties that arise in high dimensional continuous state-action spaces. As a way out, research has focussed on computing optimal control solutions based on iterative optimal control methods that are based on linear and quadratic approximations of dynamical models and cost functions. These methods require perfect knowledge of the dynamics and cost functions while they are based on gradient and Newton optimization schemes. Their applicability is also restricted to low dimensional problems due to problematic convergence in high dimensions. Moreover, the process of computing the optimal solution is removed from the learning process that might be plausible in biology. In this work, we present a new reinforcement learning method for learning optimal control solutions or motor control. This method, based on the framework of stochastic optimal control with path integrals, has a very solid theoretical foundation, while resulting in surprisingly simple learning algorithms. It is also possible to apply this approach without knowledge of the system model, and to use a wide variety of complex nonlinear cost functions for optimization. We illustrate the theoretical properties of this approach and its applicability to learning motor control tasks for reaching movements and locomotion studies. We discuss its applicability to learning desired trajectories, variable stiffness control (co-contraction), and parameterized control policies. We also investigate the applicability to signal dependent noise control systems. We believe that the suggested method offers one of the easiest to use approaches to learning optimal control suggested in the literature so far, which makes it ideally suited for computational investigations of biological motor control.

am

[BibTex]

[BibTex]


no image
Learning control in robotics – trajectory-based opitimal control techniques

Schaal, S., Atkeson, C. G.

Robotics and Automation Magazine, 17(2):20-29, 2010, clmc (article)

Abstract
In a not too distant future, robots will be a natural part of daily life in human society, providing assistance in many areas ranging from clinical applications, education and care giving, to normal household environments [1]. It is hard to imagine that all possible tasks can be preprogrammed in such robots. Robots need to be able to learn, either by themselves or with the help of human supervision. Additionally, wear and tear on robots in daily use needs to be automatically compensated for, which requires a form of continuous self-calibration, another form of learning. Finally, robots need to react to stochastic and dynamic environments, i.e., they need to learn how to optimally adapt to uncertainty and unforeseen changes. Robot learning is going to be a key ingredient for the future of autonomous robots. While robot learning covers a rather large field, from learning to perceive, to plan, to make decisions, etc., we will focus this review on topics of learning control, in particular, as it is concerned with learning control in simulated or actual physical robots. In general, learning control refers to the process of acquiring a control strategy for a particular control system and a particular task by trial and error. Learning control is usually distinguished from adaptive control [2] in that the learning system can have rather general optimization objectivesâ??not just, e.g., minimal tracking errorâ??and is permitted to fail during the process of learning, while adaptive control emphasizes fast convergence without failure. Thus, learning control resembles the way that humans and animals acquire new movement strategies, while adaptive control is a special case of learning control that fulfills stringent performance constraints, e.g., as needed in life-critical systems like airplanes. Learning control has been an active topic of research for at least three decades. However, given the lack of working robots that actually use learning components, more work needs to be done before robot learning will make it beyond the laboratory environment. This article will survey some ongoing and past activities in robot learning to assess where the field stands and where it is going. We will largely focus on nonwheeled robots and less on topics of state estimation, as typically explored in wheeled robots [3]â??6], and we emphasize learning in continuous state-action spaces rather than discrete state-action spaces [7], [8]. We will illustrate the different topics of robot learning with examples from our own research with anthropomorphic and humanoid robots.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Learning, planning, and control for quadruped locomotion over challenging terrain

Kalakrishnan, M., Buchli, J., Pastor, P., Mistry, M., Schaal, S.

International Journal of Robotics Research, 30(2):236-258, 2010, clmc (article)

Abstract
We present a control architecture for fast quadruped locomotion over rough terrain. We approach the problem by decomposing it into many sub-systems, in which we apply state-of-the-art learning, planning, optimization, and control techniques to achieve robust, fast locomotion. Unique features of our control strategy include: (1) a system that learns optimal foothold choices from expert demonstration using terrain templates, (2) a body trajectory optimizer based on the Zero- Moment Point (ZMP) stability criterion, and (3) a floating-base inverse dynamics controller that, in conjunction with force control, allows for robust, compliant locomotion over unperceived obstacles. We evaluate the performance of our controller by testing it on the LittleDog quadruped robot, over a wide variety of rough terrains of varying difficulty levels. The terrain that the robot was tested on includes rocks, logs, steps, barriers, and gaps, with obstacle sizes up to the leg length of the robot. We demonstrate the generalization ability of this controller by presenting results from testing performed by an independent external test team on terrain that has never been shown to us.

am

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Constrained Accelerations for Controlled Geometric Reduction: Sagittal-Plane Decoupling for Bipedal Locomotion

Gregg, R., Righetti, L., Buchli, J., Schaal, S.

In 2010 10th IEEE-RAS International Conference on Humanoid Robots, pages: 1-7, IEEE, Nashville, USA, 2010 (inproceedings)

Abstract
Energy-shaping control methods have produced strong theoretical results for asymptotically stable 3D bipedal dynamic walking in the literature. In particular, geometric controlled reduction exploits robot symmetries to control momentum conservation laws that decouple the sagittal-plane dynamics, which are easier to stabilize. However, the associated control laws require high-dimensional matrix inverses multiplied with complicated energy-shaping terms, often making these control theories difficult to apply to highly-redundant humanoid robots. This paper presents a first step towards the application of energy-shaping methods on real robots by casting controlled reduction into a framework of constrained accelerations for inverse dynamics control. By representing momentum conservation laws as constraints in acceleration space, we construct a general expression for desired joint accelerations that render the constraint surface invariant. By appropriately choosing an orthogonal projection, we show that the unconstrained (reduced) dynamics are decoupled from the constrained dynamics. Any acceleration-based controller can then be used to stabilize this planar subsystem, including passivity-based methods. The resulting control law is surprisingly simple and represents a practical way to employ control theoretic stability results in robotic platforms. Simulated walking of a 3D compass-gait biped show correspondence between the new and original controllers, and simulated motions of a 16-DOF humanoid demonstrate the applicability of this method.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Variable impedance control - a reinforcement learning approach

Buchli, J., Theodorou, E., Stulp, F., Schaal, S.

In Robotics Science and Systems (2010), Zaragoza, Spain, June 27-30, 2010, clmc (inproceedings)

Abstract
One of the hallmarks of the performance, versatility, and robustness of biological motor control is the ability to adapt the impedance of the overall biomechanical system to different task requirements and stochastic disturbances. A transfer of this principle to robotics is desirable, for instance to enable robots to work robustly and safely in everyday human environments. It is, however, not trivial to derive variable impedance controllers for practical high DOF robotic tasks. In this contribution, we accomplish such gain scheduling with a reinforcement learning approach algorithm, PI2 (Policy Improvement with Path Integrals). PI2 is a model-free, sampling based learning method derived from first principles of optimal control. The PI2 algorithm requires no tuning of algorithmic parameters besides the exploration noise. The designer can thus fully focus on cost function design to specify the task. From the viewpoint of robotics, a particular useful property of PI2 is that it can scale to problems of many DOFs, so that RL on real robotic systems becomes feasible. We sketch the PI2 algorithm and its theoretical properties, and how it is applied to gain scheduling. We evaluate our approach by presenting results on two different simulated robotic systems, a 3-DOF Phantom Premium Robot and a 6-DOF Kuka Lightweight Robot. We investigate tasks where the optimal strategy requires both tuning of the impedance of the end-effector, and tuning of a reference trajectory. The results show that we can use path integral based RL not only for planning but also to derive variable gain feedback controllers in realistic scenarios. Thus, the power of variable impedance control is made available to a wide variety of robotic systems and practical applications.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Inverse dynamics with optimal distribution of ground reaction forces for legged robot

Righetti, L., Buchli, J., Mistry, M., Schaal, S.

In Proceedings of the 13th International Conference on Climbing and Walking Robots (CLAWAR), pages: 580-587, Nagoya, Japan, sep 2010 (inproceedings)

Abstract
Contact interaction with the environment is crucial in the design of locomotion controllers for legged robots, to prevent slipping for example. Therefore, it is of great importance to be able to control the effects of the robots movements on the contact reaction forces. In this contribution, we extend a recent inverse dynamics algorithm for floating base robots to optimize the distribution of contact forces while achieving precise trajectory tracking. The resulting controller is algorithmically simple as compared to other approaches. Numerical simulations show that this result significantly increases the range of possible movements of a humanoid robot as compared to the previous inverse dynamics algorithm. We also present a simplification of the result where no inversion of the inertia matrix is needed which is particularly relevant for practical use on a real robot. Such an algorithm becomes interesting for agile locomotion of robots on difficult terrains where the contacts with the environment are critical, such as walking over rough or slippery terrain.

am mg

DOI [BibTex]

DOI [BibTex]

2005


no image
Composite adaptive control with locally weighted statistical learning

Nakanishi, J., Farrell, J. A., Schaal, S.

Neural Networks, 18(1):71-90, January 2005, clmc (article)

Abstract
This paper introduces a provably stable learning adaptive control framework with statistical learning. The proposed algorithm employs nonlinear function approximation with automatic growth of the learning network according to the nonlinearities and the working domain of the control system. The unknown function in the dynamical system is approximated by piecewise linear models using a nonparametric regression technique. Local models are allocated as necessary and their parameters are optimized on-line. Inspired by composite adaptive control methods, the proposed learning adaptive control algorithm uses both the tracking error and the estimation error to update the parameters. We first discuss statistical learning of nonlinear functions, and motivate our choice of the locally weighted learning framework. Second, we begin with a class of first order SISO systems for theoretical development of our learning adaptive control framework, and present a stability proof including a parameter projection method that is needed to avoid potential singularities during adaptation. Then, we generalize our adaptive controller to higher order SISO systems, and discuss further extension to MIMO problems. Finally, we evaluate our theoretical control framework in numerical simulations to illustrate the effectiveness of the proposed learning adaptive controller for rapid convergence and high accuracy of control.

am

link (url) [BibTex]

2005


link (url) [BibTex]


no image
Natural Actor-Critic

Peters, J., Vijayakumar, S., Schaal, S.

In Proceedings of the 16th European Conference on Machine Learning, 3720, pages: 280-291, (Editors: Gama, J.;Camacho, R.;Brazdil, P.;Jorge, A.;Torgo, L.), Springer, ECML, 2005, clmc (inproceedings)

Abstract
This paper investigates a novel model-free reinforcement learning architecture, the Natural Actor-Critic. The actor updates are based on stochastic policy gradients employing AmariÕs natural gradient approach, while the critic obtains both the natural policy gradient and additional parameters of a value function simultaneously by linear regres- sion. We show that actor improvements with natural policy gradients are particularly appealing as these are independent of coordinate frame of the chosen policy representation, and can be estimated more efficiently than regular policy gradients. The critic makes use of a special basis function parameterization motivated by the policy-gradient compatible function approximation. We show that several well-known reinforcement learning methods such as the original Actor-Critic and BradtkeÕs Linear Quadratic Q-Learning are in fact Natural Actor-Critic algorithms. Em- pirical evaluations illustrate the effectiveness of our techniques in com- parison to previous methods, and also demonstrate their applicability for learning control on an anthropomorphic robot arm.

am ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Comparative experiments on task space control with redundancy resolution

Nakanishi, J., Cory, R., Mistry, M., Peters, J., Schaal, S.

In Proceedings of the 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages: 3901-3908, Edmonton, Alberta, Canada, Aug. 2-6, IROS, 2005, clmc (inproceedings)

Abstract
Understanding the principles of motor coordination with redundant degrees of freedom still remains a challenging problem, particularly for new research in highly redundant robots like humanoids. Even after more than a decade of research, task space control with redundacy resolution still remains an incompletely understood theoretical topic, and also lacks a larger body of thorough experimental investigation on complex robotic systems. This paper presents our first steps towards the development of a working redundancy resolution algorithm which is robust against modeling errors and unforeseen disturbances arising from contact forces. To gain a better understanding of the pros and cons of different approaches to redundancy resolution, we focus on a comparative empirical evaluation. First, we review several redundancy resolution schemes at the velocity, acceleration and torque levels presented in the literature in a common notational framework and also introduce some new variants of these previous approaches. Second, we present experimental comparisons of these approaches on a seven-degree-of-freedom anthropomorphic robot arm. Surprisingly, one of our simplest algorithms empirically demonstrates the best performance, despite, from a theoretical point, the algorithm does not share the same beauty as some of the other methods. Finally, we discuss practical properties of these control algorithms, particularly in light of inevitable modeling errors of the robot dynamics.

am ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
A model of smooth pursuit based on learning of the target dynamics using only retinal signals

Shibata, T., Tabata, H., Schaal, S., Kawato, M.

Neural Networks, 18, pages: 213-225, 2005, clmc (article)

Abstract
While the predictive nature of the primate smooth pursuit system has been evident through several behavioural and neurophysiological experiments, few models have attempted to explain these results comprehensively. The model we propose in this paper in line with previous models employing optimal control theory; however, we hypothesize two new issues: (1) the medical superior temporal (MST) area in the cerebral cortex implements a recurrent neural network (RNN) in order to predict the current or future target velocity, and (2) a forward model of the target motion is acquired by on-line learning. We use stimulation studies to demonstrate how our new model supports these hypotheses.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Predicting EMG Data from M1 Neurons with Variational Bayesian Least Squares

Ting, J., D’Souza, A., Yamamoto, K., Yoshioka, T., Hoffman, D., Kakei, S., Sergio, L., Kalaska, J., Kawato, M., Strick, P., Schaal, S.

In Advances in Neural Information Processing Systems 18 (NIPS 2005), (Editors: Weiss, Y.;Schölkopf, B.;Platt, J.), Cambridge, MA: MIT Press, Vancouver, BC, Dec. 6-11, 2005, clmc (inproceedings)

Abstract
An increasing number of projects in neuroscience requires the statistical analysis of high dimensional data sets, as, for instance, in predicting behavior from neural firing, or in operating artificial devices from brain recordings in brain-machine interfaces. Linear analysis techniques remain prevalent in such cases, but classi-cal linear regression approaches are often numercially too fragile in high dimen-sions. In this paper, we address the question of whether EMG data collected from arm movements of monkeys can be faithfully reconstructed with linear ap-proaches from neural activity in primary motor cortex (M1). To achieve robust data analysis, we develop a full Bayesian approach to linear regression that automatically detects and excludes irrelevant features in the data, and regular-izes against overfitting. In comparison with ordinary least squares, stepwise re-gression, partial least squares, and a brute force combinatorial search for the most predictive input features in the data, we demonstrate that the new Bayesian method offers a superior mixture of characteristics in terms of regularization against overfitting, computational efficiency, and ease of use, demonstrating its potential as a drop-in replacement for other linear regression techniques. As neuroscientific results, our analyses demonstrate that EMG data can be well pre-dicted from M1 neurons, further opening the path for possible real-time inter-faces between brains and machines.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Rapbid synchronization and accurate phase-locking of rhythmic motor primitives

Pongas, D., Billard, A., Schaal, S.

In IEEE International Conference on Intelligent Robots and Systems (IROS 2005), pages: 2911-2916, Edmonton, Alberta, Canada, Aug. 2-6, 2005, clmc (inproceedings)

Abstract
Rhythmic movement is ubiquitous in human and animal behavior, e.g., as in locomotion, dancing, swimming, chewing, scratching, music playing, etc. A particular feature of rhythmic movement in biology is the rapid synchronization and phase locking with other rhythmic events in the environment, for instance music or visual stimuli as in ball juggling. In traditional oscillator theories to rhythmic movement generation, synchronization with another signal is relatively slow, and it is not easy to achieve accurate phase locking with a particular feature of the driving stimulus. Using a recently developed framework of dynamic motor primitives, we demonstrate a novel algorithm for very rapid synchronizaton of a rhythmic movement pattern, which can phase lock any feature of the movement to any particulur event in the driving stimulus. As an example application, we demonstrate how an anthropomorphic robot can use imitation learning to acquire a complex rumming pattern and keep it synchronized with an external rhythm generator that changes its frequency over time.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Parametric and Non-Parametric approaches for nonlinear tracking of moving objects

Hidaka, Y, Theodorou, E.

Technical Report-2005-1, 2005, clmc (article)

am

PDF [BibTex]

PDF [BibTex]


no image
A new methodology for robot control design

Peters, J., Mistry, M., Udwadia, F. E., Schaal, S.

In The 5th ASME International Conference on Multibody Systems, Nonlinear Dynamics, and Control (MSNDC 2005), Long Beach, CA, Sept. 24-28, 2005, clmc (inproceedings)

Abstract
Gauss principle of least constraint and its generalizations have provided a useful insights for the development of tracking controllers for mechanical systems (Udwadia,2003). Using this concept, we present a novel methodology for the design of a specific class of robot controllers. With our new framework, we demonstrate that well-known and also several novel nonlinear robot control laws can be derived from this generic framework, and show experimental verifications on a Sarcos Master Arm robot for some of these controllers. We believe that the suggested approach unifies and simplifies the design of optimal nonlinear control laws for robots obeying rigid body dynamics equations, both with or without external constraints, holonomic or nonholonomic constraints, with over-actuation or underactuation, as well as open-chain and closed-chain kinematics.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Arm movement experiments with joint space force fields using an exoskeleton robot

Mistry, M., Mohajerian, P., Schaal, S.

In IEEE Ninth International Conference on Rehabilitation Robotics, pages: 408-413, Chicago, Illinois, June 28-July 1, 2005, clmc (inproceedings)

Abstract
A new experimental platform permits us to study a novel variety of issues of human motor control, particularly full 3-D movements involving the major seven degrees-of-freedom (DOF) of the human arm. We incorporate a seven DOF robot exoskeleton, and can minimize weight and inertia through gravity, Coriolis, and inertia compensation, such that subjects' arm movements are largely unaffected by the manipulandum. Torque perturbations can be individually applied to any or all seven joints of the human arm, thus creating novel dynamic environments, or force fields, for subjects to respond and adapt to. Our first study investigates a joint space force field where the shoulder velocity drives a disturbing force in the elbow joint. Results demonstrate that subjects learn to compensate for the force field within about 100 trials, and from the strong presence of aftereffects when removing the field in some randomized catch trials, that an inverse dynamics, or internal model, of the force field is formed by the nervous system. Interestingly, while post-learning hand trajectories return to baseline, joint space trajectories remained changed in response to the field, indicating that besides learning a model of the force field, the nervous system also chose to exploit the space to minimize the effects of the force field on the realization of the endpoint trajectory plan. Further applications for our apparatus include studies in motor system redundancy resolution and inverse kinematics, as well as rehabilitation.

am

link (url) [BibTex]

link (url) [BibTex]


no image
A unifying framework for the control of robotics systems

Peters, J., Mistry, M., Udwadia, F. E., Cory, R., Nakanishi, J., Schaal, S.

In IEEE International Conference on Intelligent Robots and Systems (IROS 2005), pages: 1824-1831, Edmonton, Alberta, Canada, Aug. 2-6, 2005, clmc (inproceedings)

Abstract
Recently, [1] suggested to derive tracking controllers for mechanical systems using a generalization of GaussÕ principle of least constraint. This method al-lows us to reformulate control problems as a special class of optimal control. We take this line of reasoning one step further and demonstrate that well-known and also several novel nonlinear robot control laws can be derived from this generic methodology. We show experimental verifications on a Sar-cos Master Arm robot for some of the the derived controllers.We believe that the suggested approach offers a promising unification and simplification of nonlinear control law design for robots obeying rigid body dynamics equa-tions, both with or without external constraints, with over-actuation or under-actuation, as well as open-chain and closed-chain kinematics.

am

link (url) [BibTex]

link (url) [BibTex]

2003


no image
Dynamic movement primitives - A framework for motor control in humans and humanoid robots

Schaal, S.

In The International Symposium on Adaptive Motion of Animals and Machines, Kyoto, Japan, March 4-8, 2003, March 2003, clmc (inproceedings)

Abstract
Sensory-motor integration is one of the key issues in robotics. In this paper, we propose an approach to rhythmic arm movement control that is synchronized with an external signal based on exploiting a simple neural oscillator network. Trajectory generation by the neural oscillator is a biologically inspired method that can allow us to generate a smooth and continuous trajectory. The parameter tuning of the oscillators is used to generate a synchronized movement with wide intervals. We adopted the method for the drumming task as an example task. By using this method, the robot can realize synchronized drumming with wide drumming intervals in real time. The paper also shows the experimental results of drumming by a humanoid robot.

am

link (url) [BibTex]

2003


link (url) [BibTex]


no image
Bayesian backfitting

D’Souza, A., Vijayakumar, S., Schaal, S.

In Proceedings of the 10th Joint Symposium on Neural Computation (JSNC 2003), Irvine, CA, May 2003, 2003, clmc (inproceedings)

Abstract
We present an algorithm aimed at addressing both computational and analytical intractability of Bayesian regression models which operate in very high-dimensional, usually underconstrained spaces. Several domains of research frequently provide such datasets, including chemometrics [2], and human movement analysis [1]. The literature in nonparametric statistics provides interesting solutions such as Backfitting [3] and Partial Least Squares [4], which are extremely robust and efficient, yet lack a probabilistic interpretation that could place them in the context of current research in statistical learning algorithms that emphasize the estimation of confidence, posterior distributions, and model complexity. In order to achieve numerical robustness and low computational cost, we first derive a novel Bayesian interpretation of Backfitting (BB) as a computationally efficient regression algorithm. BBÕs learning complexity scales linearly with the input dimensionality by decoupling inference among individual input dimensions. We embed BB in an efficient, locally variational model selection mechanism that automatically grows the number of backfitting experts in a mixture-of-experts regression model. We demonstrate the effectiveness of the algorithm in performing principled regularization of model complexity when fitting nonlinear manifolds while avoiding the numerical hazards associated with highly underconstrained problems. We also note that this algorithm appears applicable in various areas of neural computation, e.g., in abstract models of computational neuroscience, or implementations of statistical learning on artificial systems.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Reinforcement learning for humanoid robotics

Peters, J., Vijayakumar, S., Schaal, S.

In IEEE-RAS International Conference on Humanoid Robots (Humanoids2003), Karlsruhe, Germany, Sept.29-30, 2003, clmc (inproceedings)

Abstract
Reinforcement learning offers one of the most general framework to take traditional robotics towards true autonomy and versatility. However, applying reinforcement learning to high dimensional movement systems like humanoid robots remains an unsolved problem. In this paper, we discuss different approaches of reinforcement learning in terms of their applicability in humanoid robotics. Methods can be coarsely classified into three different categories, i.e., greedy methods, `vanilla' policy gradient methods, and natural gradient methods. We discuss that greedy methods are not likely to scale into the domain humanoid robotics as they are problematic when used with function approximation. `Vanilla' policy gradient methods on the other hand have been successfully applied on real-world robots including at least one humanoid robot. We demonstrate that these methods can be significantly improved using the natural policy gradient instead of the regular policy gradient. A derivation of the natural policy gradient is provided, proving that the average policy gradient of Kakade (2002) is indeed the true natural gradient. A general algorithm for estimating the natural gradient, the Natural Actor-Critic algorithm, is introduced. This algorithm converges to the nearest local minimum of the cost function with respect to the Fisher information metric under suitable conditions. The algorithm outperforms non-natural policy gradients by far in a cart-pole balancing evaluation, and for learning nonlinear dynamic motor primitives for humanoid robot control. It offers a promising route for the development of reinforcement learning for truly high dimensionally continuous state-action systems.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Discovering imitation strategies through categorization of multi-cimensional data

Billard, A., Epars, Y., Schaal, S., Cheng, G.

In IEEE International Conference on Intelligent Robots and Systems (IROS 2003), Las Vegas, NV, Oct. 27-31, 2003, clmc (inproceedings)

Abstract
An essential problem of imitation is that of determining Ówhat to imitateÓ, i.e. to determine which of the many features of the demonstration are relevant to the task and which should be reproduced. The strategy followed by the imitator can be modeled as a hierarchical optimization system, which minimizes the discrepancy between two multidimensional datasets. We consider imitation of a manipulation task. To classify across manipulation strategies, we apply a probabilistic analysis to data in Cartesian and joint spaces. We determine a general metric that optimizes the policy of task reproduction, following strategy determination. The model successfully discovers strategies in six different manipulation tasks and controls task reproduction by a full body humanoid robot. or the complete path followed by the demonstrator. We follow a similar taxonomy and apply it to the learning and reproduction of a manipulation task by a humanoid robot. We take the perspective that the features of the movements to imitate are those that appear most frequently, i.e. the invariants in time. The model builds upon previous work [3], [4] and is composed of a hierarchical time delay neural network that extracts invariant features from a manipulation task performed by a human demonstrator. The system analyzes the Carthesian trajectories of the objects and the joint

am

link (url) [BibTex]

link (url) [BibTex]


no image
Scaling reinforcement learning paradigms for motor learning

Peters, J., Vijayakumar, S., Schaal, S.

In Proceedings of the 10th Joint Symposium on Neural Computation (JSNC 2003), Irvine, CA, May 2003, 2003, clmc (inproceedings)

Abstract
Reinforcement learning offers a general framework to explain reward related learning in artificial and biological motor control. However, current reinforcement learning methods rarely scale to high dimensional movement systems and mainly operate in discrete, low dimensional domains like game-playing, artificial toy problems, etc. This drawback makes them unsuitable for application to human or bio-mimetic motor control. In this poster, we look at promising approaches that can potentially scale and suggest a novel formulation of the actor-critic algorithm which takes steps towards alleviating the current shortcomings. We argue that methods based on greedy policies are not likely to scale into high-dimensional domains as they are problematic when used with function approximation Ð a must when dealing with continuous domains. We adopt the path of direct policy gradient based policy improvements since they avoid the problems of unstabilizing dynamics encountered in traditional value iteration based updates. While regular policy gradient methods have demonstrated promising results in the domain of humanoid notor control, we demonstrate that these methods can be significantly improved using the natural policy gradient instead of the regular policy gradient. Based on this, it is proved that KakadeÕs Ôaverage natural policy gradientÕ is indeed the true natural gradient. A general algorithm for estimating the natural gradient, the Natural Actor-Critic algorithm, is introduced. This algorithm converges with probability one to the nearest local minimum in Riemannian space of the cost function. The algorithm outperforms nonnatural policy gradients by far in a cart-pole balancing evaluation, and offers a promising route for the development of reinforcement learning for truly high-dimensionally continuous state-action systems.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Learning attractor landscapes for learning motor primitives

Ijspeert, A., Nakanishi, J., Schaal, S.

In Advances in Neural Information Processing Systems 15, pages: 1547-1554, (Editors: Becker, S.;Thrun, S.;Obermayer, K.), Cambridge, MA: MIT Press, 2003, clmc (inproceedings)

Abstract
If globally high dimensional data has locally only low dimensional distributions, it is advantageous to perform a local dimensionality reduction before further processing the data. In this paper we examine several techniques for local dimensionality reduction in the context of locally weighted linear regression. As possible candidates, we derive local versions of factor analysis regression, principle component regression, principle component regression on joint distributions, and partial least squares regression. After outlining the statistical bases of these methods, we perform Monte Carlo simulations to evaluate their robustness with respect to violations of their statistical assumptions. One surprising outcome is that locally weighted partial least squares regression offers the best average results, thus outperforming even factor analysis, the theoretically most appealing of our candidate techniques.Ê

am

link (url) [BibTex]

link (url) [BibTex]


no image
Learning from demonstration and adaptation of biped locomotion with dynamical movement primitives

Nakanishi, J., Morimoto, J., Endo, G., Schaal, S., Kawato, M.

In Workshop on Robot Learning by Demonstration, IEEE International Conference on Intelligent Robots and Systems (IROS 2003), Las Vegas, NV, Oct. 27-31, 2003, clmc (inproceedings)

Abstract
In this paper, we report on our research for learning biped locomotion from human demonstration. Our ultimate goal is to establish a design principle of a controller in order to achieve natural human-like locomotion. We suggest dynamical movement primitives as a CPG of a biped robot, an approach we have previously proposed for learning and encoding complex human movements. Demonstrated trajectories are learned through the movement primitives by locally weighted regression, and the frequency of the learned trajectories is adjusted automatically by a novel frequency adaptation algorithm based on phase resetting and entrainment of oscillators. Numerical simulations demonstrate the effectiveness of the proposed locomotion controller.

am

link (url) [BibTex]

link (url) [BibTex]