Header logo is


2016


Thumb xl nonlinear approximate vs exact
A New Perspective and Extension of the Gaussian Filter

Wüthrich, M., Trimpe, S., Garcia Cifuentes, C., Kappler, D., Schaal, S.

The International Journal of Robotics Research, 35(14):1731-1749, December 2016 (article)

Abstract
The Gaussian Filter (GF) is one of the most widely used filtering algorithms; instances are the Extended Kalman Filter, the Unscented Kalman Filter and the Divided Difference Filter. The GF represents the belief of the current state by a Gaussian distribution, whose mean is an affine function of the measurement. We show that this representation can be too restrictive to accurately capture the dependences in systems with nonlinear observation models, and we investigate how the GF can be generalized to alleviate this problem. To this end, we view the GF as the solution to a constrained optimization problem. From this new perspective, the GF is seen as a special case of a much broader class of filters, obtained by relaxing the constraint on the form of the approximate posterior. On this basis, we outline some conditions which potential generalizations have to satisfy in order to maintain the computational efficiency of the GF. We propose one concrete generalization which corresponds to the standard GF using a pseudo measurement instead of the actual measurement. Extending an existing GF implementation in this manner is trivial. Nevertheless, we show that this small change can have a major impact on the estimation accuracy.

am ics

PDF DOI Project Page [BibTex]

2016


PDF DOI Project Page [BibTex]


no image
Contextual Policy Search for Linear and Nonlinear Generalization of a Humanoid Walking Controller

Abdolmaleki, A., Lau, N., Reis, L., Peters, J., Neumann, G.

Journal of Intelligent & Robotic Systems, 83(3-4):393-408, (Editors: Luis Almeida, Lino Marques ), September 2016, Special Issue: Autonomous Robot Systems (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Acquiring and Generalizing the Embodiment Mapping from Human Observations to Robot Skills

Maeda, G., Ewerton, M., Koert, D., Peters, J.

IEEE Robotics and Automation Letters, 1(2):784-791, July 2016 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
On estimation of functional causal models: General results and application to post-nonlinear causal model

Zhang, K., Wang, Z., Zhang, J., Schölkopf, B.

ACM Transactions on Intelligent Systems and Technologies, 7(2):article no. 13, January 2016 (article)

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


Thumb xl cloud tracking
Gaussian Process-Based Predictive Control for Periodic Error Correction

Klenske, E. D., Zeilinger, M., Schölkopf, B., Hennig, P.

IEEE Transactions on Control Systems Technology , 24(1):110-121, 2016 (article)

ei pn

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Pymanopt: A Python Toolbox for Optimization on Manifolds using Automatic Differentiation

Townsend, J., Koep, N., Weichwald, S.

Journal of Machine Learning Research, 17(137):1-5, 2016 (article)

ei

PDF Arxiv Code Project page link (url) [BibTex]


no image
A Causal, Data-driven Approach to Modeling the Kepler Data

Wang, D., Hogg, D. W., Foreman-Mackey, D., Schölkopf, B.

Publications of the Astronomical Society of the Pacific, 128(967):094503, 2016 (article)

ei

link (url) DOI Project Page [BibTex]

link (url) DOI Project Page [BibTex]


no image
Probabilistic Inference for Determining Options in Reinforcement Learning

Daniel, C., van Hoof, H., Peters, J., Neumann, G.

Machine Learning, Special Issue, 104(2):337-357, (Editors: Gärtner, T., Nanni, M., Passerini, A. and Robardet, C.), European Conference on Machine Learning im Machine Learning, Journal Track, 2016, Best Student Paper Award of ECML-PKDD 2016 (article)

am ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Influence of initial fixation position in scene viewing

Rothkegel, L. O. M., Trukenbrod, H. A., Schütt, H. H., Wichmann, F. A., Engbert, R.

Vision Research, 129, pages: 33-49, 2016 (article)

ei

link (url) DOI Project Page [BibTex]

link (url) DOI Project Page [BibTex]


no image
Testing models of peripheral encoding using metamerism in an oddity paradigm

Wallis, T. S. A., Bethge, M., Wichmann, F. A.

Journal of Vision, 16(2), 2016 (article)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Modeling Confounding by Half-Sibling Regression

Schölkopf, B., Hogg, D., Wang, D., Foreman-Mackey, D., Janzing, D., Simon-Gabriel, C. J., Peters, J.

Proceedings of the National Academy of Science, 113(27):7391-7398, 2016 (article)

ei

Code link (url) DOI Project Page [BibTex]

Code link (url) DOI Project Page [BibTex]


Thumb xl dual control sampled b
Dual Control for Approximate Bayesian Reinforcement Learning

Klenske, E. D., Hennig, P.

Journal of Machine Learning Research, 17(127):1-30, 2016 (article)

ei pn

PDF link (url) [BibTex]

PDF link (url) [BibTex]


no image
A Population Based Gaussian Mixture Model Incorporating 18F-FDG-PET and DW-MRI Quantifies Tumor Tissue Classes

Divine, M. R., Katiyar, P., Kohlhofer, U., Quintanilla-Martinez, L., Disselhorst, J. A., Pichler, B. J.

Journal of Nuclear Medicine, 57(3):473-479, 2016 (article)

ei

DOI [BibTex]

DOI [BibTex]


Thumb xl img02
Probabilistic Duality for Parallel Gibbs Sampling without Graph Coloring

Mescheder, L., Nowozin, S., Geiger, A.

Arxiv, 2016 (article)

Abstract
We present a new notion of probabilistic duality for random variables involving mixture distributions. Using this notion, we show how to implement a highly-parallelizable Gibbs sampler for weakly coupled discrete pairwise graphical models with strictly positive factors that requires almost no preprocessing and is easy to implement. Moreover, we show how our method can be combined with blocking to improve mixing. Even though our method leads to inferior mixing times compared to a sequential Gibbs sampler, we argue that our method is still very useful for large dynamic networks, where factors are added and removed on a continuous basis, as it is hard to maintain a graph coloring in this setup. Similarly, our method is useful for parallelizing Gibbs sampling in graphical models that do not allow for graph colorings with a small number of colors such as densely connected graphs.

avg

pdf [BibTex]


no image
Painfree and accurate Bayesian estimation of psychometric functions for (potentially) overdispersed data

Schütt, H. H., Harmeling, S., Macke, J. H., Wichmann, F. A.

Vision Research, 122, pages: 105-123, 2016 (article)

ei

link (url) DOI Project Page [BibTex]

link (url) DOI Project Page [BibTex]


no image
Hierarchical Relative Entropy Policy Search

Daniel, C., Neumann, G., Kroemer, O., Peters, J.

Journal of Machine Learning Research, 17(93):1-50, 2016 (article)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Kernel Mean Shrinkage Estimators

Muandet, K., Sriperumbudur, B., Fukumizu, K., Gretton, A., Schölkopf, B.

Journal of Machine Learning Research, 17(48):1-41, 2016 (article)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Learning to Deblur

Schuler, C. J., Hirsch, M., Harmeling, S., Schölkopf, B.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(7):1439-1451, IEEE, 2016 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Transfer Learning in Brain-Computer Interfaces

Jayaram, V., Alamgir, M., Altun, Y., Schölkopf, B., Grosse-Wentrup, M.

IEEE Computational Intelligence Magazine, 11(1):20-31, 2016 (article)

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
MERLiN: Mixture Effect Recovery in Linear Networks

Weichwald, S., Grosse-Wentrup, M., Gretton, A.

IEEE Journal of Selected Topics in Signal Processing, 10(7):1254-1266, 2016 (article)

ei

Arxiv Code PDF DOI Project Page [BibTex]

Arxiv Code PDF DOI Project Page [BibTex]


no image
Causal inference using invariant prediction: identification and confidence intervals

Peters, J., Bühlmann, P., Meinshausen, N.

Journal of the Royal Statistical Society, Series B (Statistical Methodology), 78(5):947-1012, 2016, (with discussion) (article)

ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Causal discovery and inference: concepts and recent methodological advances

Spirtes, P., Zhang, K.

Applied Informatics, 3(3):1-28, 2016 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Self-regulation of brain rhythms in the precuneus: a novel BCI paradigm for patients with ALS

Fomina, T., Lohmann, G., Erb, M., Ethofer, T., Schölkopf, B., Grosse-Wentrup, M.

Journal of Neural Engineering, 13(6):066021, 2016 (article)

ei

link (url) Project Page [BibTex]


no image
Influence Estimation and Maximization in Continuous-Time Diffusion Networks

Gomez-Rodriguez, M., Song, L., Du, N., Zha, H., Schölkopf, B.

ACM Transactions on Information Systems, 34(2):9:1-9:33, 2016 (article)

ei

DOI Project Page Project Page [BibTex]

DOI Project Page Project Page [BibTex]


no image
The population of long-period transiting exoplanets

Foreman-Mackey, D., Morton, T. D., Hogg, D. W., Agol, E., Schölkopf, B.

The Astronomical Journal, 152(6):206, 2016 (article)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Event-based Sampling for Reducing Communication Load in Realtime Human Motion Analysis by Wireless Inertial Sensor Networks

Laidig, D., Trimpe, S., Seel, T.

Current Directions in Biomedical Engineering, 2(1):711-714, De Gruyter, 2016 (article)

am ics

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
An overview of quantitative approaches in Gestalt perception

Jäkel, F., Singh, M., Wichmann, F. A., Herzog, M. H.

Vision Research, 126, pages: 3-8, 2016 (article)

ei

link (url) DOI Project Page [BibTex]

link (url) DOI Project Page [BibTex]


no image
Bootstrat: Population Informed Bootstrapping for Rare Variant Tests

Huang, H., Peloso, G. M., Howrigan, D., Rakitsch, B., Simon-Gabriel, C. J., Goldstein, J. I., Daly, M. J., Borgwardt, K., Neale, B. M.

bioRxiv, 2016, preprint (article)

ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Probabilistic Movement Models Show that Postural Control Precedes and Predicts Volitional Motor Control

Rueckert, E., Camernik, J., Peters, J., Babic, J.

Nature PG: Scientific Reports, 6(Article number: 28455), 2016 (article)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Learning Taxonomy Adaptation in Large-scale Classification

Babbar, R., Partalas, I., Gaussier, E., Amini, M., Amblard, C.

Journal of Machine Learning Research, 17(98):1-37, 2016 (article)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
BOiS—Berlin Object in Scene Database: Controlled Photographic Images for Visual Search Experiments with Quantified Contextual Priors

Mohr, J., Seyfarth, J., Lueschow, A., Weber, J. E., Wichmann, F. A., Obermayer, K.

Frontiers in Psychology, 2016 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Preface to the ACM TIST Special Issue on Causal Discovery and Inference

Zhang, K., Li, J., Bareinboim, E., Schölkopf, B., Pearl, J.

ACM Transactions on Intelligent Systems and Technologies, 7(2):article no. 17, 2016 (article)

ei

DOI [BibTex]

DOI [BibTex]


Thumb xl pami
Map-Based Probabilistic Visual Self-Localization

Brubaker, M. A., Geiger, A., Urtasun, R.

IEEE Trans. on Pattern Analysis and Machine Intelligence (PAMI), 2016 (article)

Abstract
Accurate and efficient self-localization is a critical problem for autonomous systems. This paper describes an affordable solution to vehicle self-localization which uses odometry computed from two video cameras and road maps as the sole inputs. The core of the method is a probabilistic model for which an efficient approximate inference algorithm is derived. The inference algorithm is able to utilize distributed computation in order to meet the real-time requirements of autonomous systems in some instances. Because of the probabilistic nature of the model the method is capable of coping with various sources of uncertainty including noise in the visual odometry and inherent ambiguities in the map (e.g., in a Manhattan world). By exploiting freely available, community developed maps and visual odometry measurements, the proposed method is able to localize a vehicle to 4m on average after 52 seconds of driving on maps which contain more than 2,150km of drivable roads.

avg ps

pdf Project Page [BibTex]

pdf Project Page [BibTex]


no image
Recurrent Spiking Networks Solve Planning Tasks

Rueckert, E., Kappel, D., Tanneberg, D., Pecevski, D., Peters, J.

Nature PG: Scientific Reports, 6(Article number: 21142), 2016 (article)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Bio-inspired feedback-circuit implementation of discrete, free energy optimizing, winner-take-all computations

Genewein, T, Braun, DA

Biological Cybernetics, 110(2):135–150, June 2016 (article)

Abstract
Bayesian inference and bounded rational decision-making require the accumulation of evidence or utility, respectively, to transform a prior belief or strategy into a posterior probability distribution over hypotheses or actions. Crucially, this process cannot be simply realized by independent integrators, since the different hypotheses and actions also compete with each other. In continuous time, this competitive integration process can be described by a special case of the replicator equation. Here we investigate simple analog electric circuits that implement the underlying differential equation under the constraint that we only permit a limited set of building blocks that we regard as biologically interpretable, such as capacitors, resistors, voltage-dependent conductances and voltage- or current-controlled current and voltage sources. The appeal of these circuits is that they intrinsically perform normalization without requiring an explicit divisive normalization. However, even in idealized simulations, we find that these circuits are very sensitive to internal noise as they accumulate error over time. We discuss in how far neural circuits could implement these operations that might provide a generic competitive principle underlying both perception and action.

ei

DOI [BibTex]

DOI [BibTex]


no image
Decision-Making under Ambiguity Is Modulated by Visual Framing, but Not by Motor vs. Non-Motor Context: Experiments and an Information-Theoretic Ambiguity Model

Grau-Moya, J, Ortega, PA, Braun, DA

PLoS ONE, 11(4):1-21, April 2016 (article)

Abstract
A number of recent studies have investigated differences in human choice behavior depending on task framing, especially comparing economic decision-making to choice behavior in equivalent sensorimotor tasks. Here we test whether decision-making under ambiguity exhibits effects of task framing in motor vs. non-motor context. In a first experiment, we designed an experience-based urn task with varying degrees of ambiguity and an equivalent motor task where subjects chose between hitting partially occluded targets. In a second experiment, we controlled for the different stimulus design in the two tasks by introducing an urn task with bar stimuli matching those in the motor task. We found ambiguity attitudes to be mainly influenced by stimulus design. In particular, we found that the same subjects tended to be ambiguity-preferring when choosing between ambiguous bar stimuli, but ambiguity-avoiding when choosing between ambiguous urn sample stimuli. In contrast, subjects’ choice pattern was not affected by changing from a target hitting task to a non-motor context when keeping the stimulus design unchanged. In both tasks subjects’ choice behavior was continuously modulated by the degree of ambiguity. We show that this modulation of behavior can be explained by an information-theoretic model of ambiguity that generalizes Bayes-optimal decision-making by combining Bayesian inference with robust decision-making under model uncertainty. Our results demonstrate the benefits of information-theoretic models of decision-making under varying degrees of ambiguity for a given context, but also demonstrate the sensitivity of ambiguity attitudes across contexts that theoretical models struggle to explain.

ei

DOI [BibTex]

2007


no image
A Tutorial on Spectral Clustering

von Luxburg, U.

Statistics and Computing, 17(4):395-416, December 2007 (article)

Abstract
In recent years, spectral clustering has become one of the most popular modern clustering algorithms. It is simple to implement, can be solved efficiently by standard linear algebra software, and very often outperforms traditional clustering algorithms such as the k-means algorithm. On the first glance spectral clustering appears slightly mysterious, and it is not obvious to see why it works at all and what it really does. The goal of this tutorial is to give some intuition on those questions. We describe different graph Laplacians and their basic properties, present the most common spectral clustering algorithms, and derive those algorithms from scratch by several different approaches. Advantages and disadvantages of the different spectral clustering algorithms are discussed.

ei

PDF PDF DOI [BibTex]

2007


PDF PDF DOI [BibTex]


no image
A Tutorial on Kernel Methods for Categorization

Jäkel, F., Schölkopf, B., Wichmann, F.

Journal of Mathematical Psychology, 51(6):343-358, December 2007 (article)

Abstract
The abilities to learn and to categorize are fundamental for cognitive systems, be it animals or machines, and therefore have attracted attention from engineers and psychologists alike. Modern machine learning methods and psychological models of categorization are remarkably similar, partly because these two fields share a common history in artificial neural networks and reinforcement learning. However, machine learning is now an independent and mature field that has moved beyond psychologically or neurally inspired algorithms towards providing foundations for a theory of learning that is rooted in statistics and functional analysis. Much of this research is potentially interesting for psychological theories of learning and categorization but also hardly accessible for psychologists. Here, we provide a tutorial introduction to a popular class of machine learning tools, called kernel methods. These methods are closely related to perceptrons, radial-basis-function neural networks and exemplar theories of catego rization. Recent theoretical advances in machine learning are closely tied to the idea that the similarity of patterns can be encapsulated in a positive definite kernel. Such a positive definite kernel can define a reproducing kernel Hilbert space which allows one to use powerful tools from functional analysis for the analysis of learning algorithms. We give basic explanations of some key concepts—the so-called kernel trick, the representer theorem and regularization—which may open up the possibility that insights from machine learning can feed back into psychology.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Accurate Splice site Prediction Using Support Vector Machines

Sonnenburg, S., Schweikert, G., Philips, P., Behr, J., Rätsch, G.

BMC Bioinformatics, 8(Supplement 10):1-16, December 2007 (article)

Abstract
Background: For splice site recognition, one has to solve two classification problems: discriminating true from decoy splice sites for both acceptor and donor sites. Gene finding systems typically rely on Markov Chains to solve these tasks. Results: In this work we consider Support Vector Machines for splice site recognition. We employ the so-called weighted degree kernel which turns out well suited for this task, as we will illustrate in several experiments where we compare its prediction accuracy with that of recently proposed systems. We apply our method to the genome-wide recognition of splice sites in Caenorhabditis elegans, Drosophila melanogaster, Arabidopsis thaliana, Danio rerio, and Homo sapiens. Our performance estimates indicate that splice sites can be recognized very accurately in these genomes and that our method outperforms many other methods including Markov Chains, GeneSplicer and SpliceMachine. We provide genome-wide predictions of splice sites and a stand-alone prediction tool ready to be used for incorporation in a gene finder. Availability: Data, splits, additional information on the model selection, the whole genome predictions, as well as the stand-alone prediction tool are available for download at http:// www.fml.mpg.de/raetsch/projects/splice.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
A unifying framework for robot control with redundant DOFs

Peters, J., Mistry, M., Udwadia, F., Nakanishi, J., Schaal, S.

Autonomous Robots, 24(1):1-12, October 2007 (article)

Abstract
Recently, Udwadia (Proc. R. Soc. Lond. A 2003:1783–1800, 2003) suggested to derive tracking controllers for mechanical systems with redundant degrees-of-freedom (DOFs) using a generalization of Gauss’ principle of least constraint. This method allows reformulating control problems as a special class of optimal controllers. In this paper, we take this line of reasoning one step further and demonstrate that several well-known and also novel nonlinear robot control laws can be derived from this generic methodology. We show experimental verifications on a Sarcos Master Arm robot for some of the derived controllers. The suggested approach offers a promising unification and simplification of nonlinear control law design for robots obeying rigid body dynamics equations, both with or without external constraints, with over-actuation or underactuation, as well as open-chain and closed-chain kinematics.

ei

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


no image
The Need for Open Source Software in Machine Learning

Sonnenburg, S., Braun, M., Ong, C., Bengio, S., Bottou, L., Holmes, G., LeCun, Y., Müller, K., Pereira, F., Rasmussen, C., Rätsch, G., Schölkopf, B., Smola, A., Vincent, P., Weston, J., Williamson, R.

Journal of Machine Learning Research, 8, pages: 2443-2466, October 2007 (article)

Abstract
Open source tools have recently reached a level of maturity which makes them suitable for building large-scale real-world systems. At the same time, the field of machine learning has developed a large body of powerful learning algorithms for diverse applications. However, the true potential of these methods is not realized, since existing implementations are not openly shared, resulting in software with low usability, and weak interoperability. We argue that this situation can be significantly improved by increasing incentives for researchers to publish their software under an open source model. Additionally, we outline the problems authors are faced with when trying to publish algorithmic implementations of machine learning methods. We believe that a resource of peer reviewed software accompanied by short articles would be highly valuable to both the machine learning and the general scientific community.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Some observations on the masking effects of Mach bands

Curnow, T., Cowie, DA., Henning, GB., Hill, NJ.

Journal of the Optical Society of America A, 24(10):3233-3241, October 2007 (article)

Abstract
There are 8 cycle / deg ripples or oscillations in performance as a function of location near Mach bands in experiments measuring Mach bands’ masking effects on random polarity signal bars. The oscillations with increments are 180 degrees out of phase with those for decrements. The oscillations, much larger than the measurement error, appear to relate to the weighting function of the spatial-frequency-tuned channel detecting the broad- band signals. The ripples disappear with step maskers and become much smaller at durations below 25 ms, implying either that the site of masking has changed or that the weighting function and hence spatial-frequency tuning is slow to develop.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Mining complex genotypic features for predicting HIV-1 drug resistance

Saigo, H., Uno, T., Tsuda, K.

Bioinformatics, 23(18):2455-2462, September 2007 (article)

Abstract
Human immunodeficiency virus type 1 (HIV-1) evolves in human body, and its exposure to a drug often causes mutations that enhance the resistance against the drug. To design an effective pharmacotherapy for an individual patient, it is important to accurately predict the drug resistance based on genotype data. Notably, the resistance is not just the simple sum of the effects of all mutations. Structural biological studies suggest that the association of mutations is crucial: Even if mutations A or B alone do not affect the resistance, a significant change might happen when the two mutations occur together. Linear regression methods cannot take the associations into account, while decision tree methods can reveal only limited associations. Kernel methods and neural networks implicitly use all possible associations for prediction, but cannot select salient associations explicitly. Our method, itemset boosting, performs linear regression in the complete space of power sets of mutations. It implements a forward feature selection procedure where, in each iteration, one mutation combination is found by an efficient branch-and-bound search. This method uses all possible combinations, and salient associations are explicitly shown. In experiments, our method worked particularly well for predicting the resistance of nucleotide reverse transcriptase inhibitors (NRTIs). Furthermore, it successfully recovered many mutation associations known in biological literature.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Real-Time Fetal Heart Monitoring in Biomagnetic Measurements Using Adaptive Real-Time ICA

Waldert, S., Bensch, M., Bogdan, M., Rosenstiel, W., Schölkopf, B., Lowery, C., Eswaran, H., Preissl, H.

IEEE Transactions on Biomedical Engineering, 54(10):1867-1874, September 2007 (article)

Abstract
Electrophysiological signals of the developing fetal brain and heart can be investigated by fetal magnetoencephalography (fMEG). During such investigations, the fetal heart activity and that of the mother should be monitored continuously to provide an important indication of current well-being. Due to physical constraints of an fMEG system, it is not possible to use clinically established heart monitors for this purpose. Considering this constraint, we developed a real-time heart monitoring system for biomagnetic measurements and showed its reliability and applicability in research and for clinical examinations. The developed system consists of real-time access to fMEG data, an algorithm based on Independent Component Analysis (ICA), and a graphical user interface (GUI). The algorithm extracts the current fetal and maternal heart signal from a noisy and artifact-contaminated data stream in real-time and is able to adapt automatically to continuously varying environmental parameters. This algorithm has been na med Adaptive Real-time ICA (ARICA) and is applicable to real-time artifact removal as well as to related blind signal separation problems.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]