Header logo is


2019


Thumb xl paper images.005
Learning to Explore in Motion and Interaction Tasks

Bogdanovic, M., Righetti, L.

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE, November 2019 (conference)

Abstract
Model free reinforcement learning suffers from the high sampling complexity inherent to robotic manipulation or locomotion tasks. Most successful approaches typically use random sampling strategies which leads to slow policy convergence. In this paper we present a novel approach for efficient exploration that leverages previously learned tasks. We exploit the fact that the same system is used across many tasks and build a generative model for exploration based on data from previously solved tasks to improve learning new tasks. The approach also enables continuous learning of improved exploration strategies as novel tasks are learned. Extensive simulations on a robot manipulator performing a variety of motion and contact interaction tasks demonstrate the capabilities of the approach. In particular, our experiments suggest that the exploration strategy can more than double learning speed, especially when rewards are sparse. Moreover, the algorithm is robust to task variations and parameter tuning, making it beneficial for complex robotic problems.

mg

arXiv [BibTex]

2019


arXiv [BibTex]


Thumb xl paper images.007
Leveraging Contact Forces for Learning to Grasp

Merzic, H., Bogdanovic, M., Kappler, D., Righetti, L., Bohg, J.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) 2019, IEEE, International Conference on Robotics and Automation, May 2019 (inproceedings)

Abstract
Grasping objects under uncertainty remains an open problem in robotics research. This uncertainty is often due to noisy or partial observations of the object pose or shape. To enable a robot to react appropriately to unforeseen effects, it is crucial that it continuously takes sensor feedback into account. While visual feedback is important for inferring a grasp pose and reaching for an object, contact feedback offers valuable information during manipulation and grasp acquisition. In this paper, we use model-free deep reinforcement learning to synthesize control policies that exploit contact sensing to generate robust grasping under uncertainty. We demonstrate our approach on a multi-fingered hand that exhibits more complex finger coordination than the commonly used two- fingered grippers. We conduct extensive experiments in order to assess the performance of the learned policies, with and without contact sensing. While it is possible to learn grasping policies without contact sensing, our results suggest that contact feedback allows for a significant improvement of grasping robustness under object pose uncertainty and for objects with a complex shape.

am mg

video arXiv [BibTex]

video arXiv [BibTex]


no image
Robust Humanoid Locomotion Using Trajectory Optimization and Sample-Efficient Learning

Yeganegi, M. H., Khadiv, M., Moosavian, S. A. A., Zhu, J., Prete, A. D., Righetti, L.

Proceedings International Conference on Humanoid Robots, IEEE, 2019 IEEE-RAS International Conference on Humanoid Robots, 2019 (conference)

Abstract
Trajectory optimization (TO) is one of the most powerful tools for generating feasible motions for humanoid robots. However, including uncertainties and stochasticity in the TO problem to generate robust motions can easily lead to intractable problems. Furthermore, since the models used in TO have always some level of abstraction, it can be hard to find a realistic set of uncertainties in the model space. In this paper we leverage a sample-efficient learning technique (Bayesian optimization) to robustify TO for humanoid locomotion. The main idea is to use data from full-body simulations to make the TO stage robust by tuning the cost weights. To this end, we split the TO problem into two phases. The first phase solves a convex optimization problem for generating center of mass (CoM) trajectories based on simplified linear dynamics. The second stage employs iterative Linear-Quadratic Gaussian (iLQG) as a whole-body controller to generate full body control inputs. Then we use Bayesian optimization to find the cost weights to use in the first stage that yields robust performance in the simulation/experiment, in the presence of different disturbance/uncertainties. The results show that the proposed approach is able to generate robust motions for different sets of disturbances and uncertainties.

mg

https://arxiv.org/abs/1907.04616 [BibTex]

https://arxiv.org/abs/1907.04616 [BibTex]

2009


no image
Modelling the interplay of central pattern generation and sensory feedback in the neuromuscular control of running

Daley, M., Righetti, L., Ijspeert, A.

In Comparative Biochemistry and Physiology - Part A: Molecular & Integrative Physiology. Annual Main Meeting for the Society for Experimental Biology, 153, Glasgow, Scotland, 2009 (inproceedings)

mg

link (url) DOI [BibTex]

2009


link (url) DOI [BibTex]

2007


no image
Hand placement during quadruped locomotion in a humanoid robot: A dynamical system approach

Degallier, S., Righetti, L., Ijspeert, A.

In 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages: 2047-2052, IEEE, San Diego, USA, 2007 (inproceedings)

Abstract
Locomotion on an irregular surface is a challenging task in robotics. Among different problems to solve to obtain robust locomotion, visually guided locomotion and accurate foot placement are of crucial importance. Robust controllers able to adapt to sensory-motor feedbacks, in particular to properly place feet on specific locations, are thus needed. Dynamical systems are well suited for this task as any online modification of the parameters leads to a smooth adaptation of the trajectories, allowing a safe integration of sensory-motor feedback. In this contribution, as a first step in the direction of locomotion on irregular surfaces, we present a controller that allows hand placement during crawling in a simulated humanoid robot. The goal of the controller is to superimpose rhythmic movements for crawling with discrete (i.e. short-term) modulations of the hand placements to reach specific marks on the ground.

mg

link (url) DOI [BibTex]

2007


link (url) DOI [BibTex]


no image
Lower body realization of the baby humanoid - ‘iCub’

Tsagarakis, N., Becchi, F., Righetti, L., Ijspeert, A., Caldwell, D.

In 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages: 3616-3622, IEEE, San Diego, USA, 2007 (inproceedings)

Abstract
Nowadays, the understanding of the human cognition and it application to robotic systems forms a great challenge of research. The iCub is a robotic platform that was developed within the RobotCub European project to provide the cognition research community with an open baby- humanoid platform for understanding and development of cognitive systems. In this paper we present the design requirements and mechanical realization of the lower body developed for the "iCub". In particular the leg and the waist mechanisms adopted for lower body to match the size and physical abilities of a 2 frac12 year old human baby are introduced.

mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]