Header logo is


2018


no image
Parallel and functionally segregated processing of task phase and conscious content in the prefrontal cortex

Kapoor, V., Besserve, M., Logothetis, N. K., Panagiotaropoulos, T. I.

Communications Biology, 1(215):1-12, December 2018 (article)

ei

link (url) DOI Project Page [BibTex]

2018


link (url) DOI Project Page [BibTex]


Thumb xl screen shot 2019 01 07 at 12.05.00
Control of Musculoskeletal Systems using Learned Dynamics Models

Büchler, D., Calandra, R., Schölkopf, B., Peters, J.

IEEE Robotics and Automation Letters, Robotics and Automation Letters, 3(4):3161-3168, IEEE, 2018 (article)

Abstract
Controlling musculoskeletal systems, especially robots actuated by pneumatic artificial muscles, is a challenging task due to nonlinearities, hysteresis effects, massive actuator de- lay and unobservable dependencies such as temperature. Despite such difficulties, muscular systems offer many beneficial prop- erties to achieve human-comparable performance in uncertain and fast-changing tasks. For example, muscles are backdrivable and provide variable stiffness while offering high forces to reach high accelerations. In addition, the embodied intelligence deriving from the compliance might reduce the control demands for specific tasks. In this paper, we address the problem of how to accurately control musculoskeletal robots. To address this issue, we propose to learn probabilistic forward dynamics models using Gaussian processes and, subsequently, to employ these models for control. However, Gaussian processes dynamics models cannot be set-up for our musculoskeletal robot as for traditional motor- driven robots because of unclear state composition etc. We hence empirically study and discuss in detail how to tune these approaches to complex musculoskeletal robots and their specific challenges. Moreover, we show that our model can be used to accurately control an antagonistic pair of pneumatic artificial muscles for a trajectory tracking task while considering only one- step-ahead predictions of the forward model and incorporating model uncertainty.

ei

RAL18final link (url) DOI Project Page [BibTex]

RAL18final link (url) DOI Project Page [BibTex]


no image
PET/MRI Hybrid Systems

Mannheim, G. J., Schmid, A. M., Schwenck, J., Katiyar, P., Herfert, K., Pichler, B. J., Disselhorst, J. A.

Seminars in Nuclear Medicine, 48(4):332-347, July 2018 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Infinite Factorial Finite State Machine for Blind Multiuser Channel Estimation

Ruiz, F. J. R., Valera, I., Svensson, L., Perez-Cruz, F.

IEEE Transactions on Cognitive Communications and Networking, 4(2):177-191, June 2018 (article)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


Thumb xl screen shot 2018 03 22 at 10.40.47 am
Oncilla robot: a versatile open-source quadruped research robot with compliant pantograph legs

Sproewitz, A., Tuleu, A., Ajallooeian, M., Vespignani, M., Moeckel, R., Eckert, P., D’Haene, M., Degrave, J., Nordmann, A., Schrauwen, B., Steil, J., Ijspeert, A. J.

Frontiers in Robotics and AI, 5(67), June 2018, arXiv: 1803.06259 (article)

Abstract
We present Oncilla robot, a novel mobile, quadruped legged locomotion machine. This large-cat sized, 5.1 robot is one of a kind of a recent, bioinspired legged robot class designed with the capability of model-free locomotion control. Animal legged locomotion in rough terrain is clearly shaped by sensor feedback systems. Results with Oncilla robot show that agile and versatile locomotion is possible without sensory signals to some extend, and tracking becomes robust when feedback control is added (Ajaoolleian 2015). By incorporating mechanical and control blueprints inspired from animals, and by observing the resulting robot locomotion characteristics, we aim to understand the contribution of individual components. Legged robots have a wide mechanical and control design parameter space, and a unique potential as research tools to investigate principles of biomechanics and legged locomotion control. But the hardware and controller design can be a steep initial hurdle for academic research. To facilitate the easy start and development of legged robots, Oncilla-robot's blueprints are available through open-source. [...]

dlg

link (url) DOI Project Page [BibTex]

link (url) DOI Project Page [BibTex]


no image
Assisting Movement Training and Execution With Visual and Haptic Feedback

Ewerton, M., Rother, D., Weimar, J., Kollegger, G., Wiemeyer, J., Peters, J., Maeda, G.

Frontiers in Neurorobotics, 12, May 2018 (article)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Mixture of Attractors: A Novel Movement Primitive Representation for Learning Motor Skills From Demonstrations

Manschitz, S., Gienger, M., Kober, J., Peters, J.

IEEE Robotics and Automation Letters, 3(2):926-933, April 2018 (article)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Probabilistic movement primitives under unknown system dynamics

Paraschos, A., Rueckert, E., Peters, J., Neumann, G.

Advanced Robotics, 32(6):297-310, April 2018 (article)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
An Algorithmic Perspective on Imitation Learning

Osa, T., Pajarinen, J., Neumann, G., Bagnell, J., Abbeel, P., Peters, J.

Foundations and Trends in Robotics, 7(1-2):1-179, March 2018 (article)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Using Probabilistic Movement Primitives in Robotics

Paraschos, A., Daniel, C., Peters, J., Neumann, G.

Autonomous Robots, 42(3):529-551, March 2018 (article)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
A kernel-based approach to learning contact distributions for robot manipulation tasks

Kroemer, O., Leischnig, S., Luettgen, S., Peters, J.

Autonomous Robots, 42(3):581-600, March 2018 (article)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Approximate Value Iteration Based on Numerical Quadrature

Vinogradska, J., Bischoff, B., Peters, J.

IEEE Robotics and Automation Letters, 3(2):1330-1337, January 2018 (article)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Biomimetic Tactile Sensors and Signal Processing with Spike Trains: A Review

Yi, Z., Zhang, Y., Peters, J.

Sensors and Actuators A: Physical, 269, pages: 41-52, January 2018 (article)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Impact of the AIF Recording Method on Kinetic Parameters in Small Animal PET

Napieczynska, H., Kolb, A., Katiyar, P., Tonietto, M., Ud-Dean, M., Stumm, R., Herfert, K., Calaminus, C., Pichler, B.

Journal of Nuclear Medicine, 2018 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Nonclassical states of light with a smooth P function

Damanet, F., Kübler, J. M., Martin, J., Braun, D.

Physical Review A, 97(2):023832, 2018 (article)

ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Design and Analysis of the NIPS 2016 Review Process

Shah*, N., Tabibian*, B., Muandet, K., Guyon, I., von Luxburg, U.

Journal of Machine Learning Research, 19(49):1-34, 2018, *equal contribution (article)

ei slt

arXiv link (url) Project Page Project Page [BibTex]

arXiv link (url) Project Page Project Page [BibTex]


no image
A Flexible Approach for Fair Classification

Zafar, M. B., Valera, I., Gomez Rodriguez, M., Gummadi, K.

Journal of Machine Learning, 2018 (article) Accepted

ei

Project Page [BibTex]

Project Page [BibTex]


no image
Does universal controllability of physical systems prohibit thermodynamic cycles?

Janzing, D., Wocjan, P.

Open Systems and Information Dynamics, 25(3):1850016, 2018 (article)

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Pathway-based subnetworks enable cross-disease biomarker discovery

Haider, S., Yao, C., Sabine, V., Grzadkowski, M., Stimper, V., Starmans, M., Wang, J., Nguyen, F., Moon, N., Lin, X., Drake, C., Crozier, C., Brookes, C., van de Velde, C., Hasenburg, A., Kieback, D., Markopoulos, C., Dirix, L., Seynaeve, C., Rea, D., Kasprzyk, A., Lambin, P., Lio’, P., Bartlett, J., Boutros, P.

Nature Communications, 9, 2018, Article number: 4746 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Learning Causality and Causality-Related Learning: Some Recent Progress

Zhang, K., Schölkopf, B., Spirtes, P., Glymour, C.

National Science Review, 5(1):26-29, 2018 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Online optimal trajectory generation for robot table tennis

Koc, O., Maeda, G., Peters, J.

Robotics and Autonomous Systems, 105, pages: 121-137, 2018 (article)

ei

PDF link (url) DOI Project Page [BibTex]

PDF link (url) DOI Project Page [BibTex]


no image
Counterfactual Mean Embedding: A Kernel Method for Nonparametric Causal Inference

Muandet, K., Kanagawa, M., Saengkyongam, S., Marukata, S.

Arxiv e-prints, arXiv:1805.08845v1 [stat.ML], 2018 (article)

Abstract
This paper introduces a novel Hilbert space representation of a counterfactual distribution---called counterfactual mean embedding (CME)---with applications in nonparametric causal inference. Counterfactual prediction has become an ubiquitous tool in machine learning applications, such as online advertisement, recommendation systems, and medical diagnosis, whose performance relies on certain interventions. To infer the outcomes of such interventions, we propose to embed the associated counterfactual distribution into a reproducing kernel Hilbert space (RKHS) endowed with a positive definite kernel. Under appropriate assumptions, the CME allows us to perform causal inference over the entire landscape of the counterfactual distribution. The CME can be estimated consistently from observational data without requiring any parametric assumption about the underlying distributions. We also derive a rate of convergence which depends on the smoothness of the conditional mean and the Radon-Nikodym derivative of the underlying marginal distributions. Our framework can deal with not only real-valued outcome, but potentially also more complex and structured outcomes such as images, sequences, and graphs. Lastly, our experimental results on off-policy evaluation tasks demonstrate the advantages of the proposed estimator.

ei pn

arXiv [BibTex]

arXiv [BibTex]


no image
Hierarchical Reinforcement Learning of Multiple Grasping Strategies with Human Instructions

Osa, T., Peters, J., Neumann, G.

Advanced Robotics, 32(18):955-968, 2018 (article)

ei

DOI Project Page [BibTex]


no image
Autofocusing-based phase correction

Loktyushin, A., Ehses, P., Schölkopf, B., Scheffler, K.

Magnetic Resonance in Medicine, 80(3):958-968, 2018 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Case series: Slowing alpha rhythm in late-stage ALS patients

Hohmann, M. R., Fomina, T., Jayaram, V., Emde, T., Just, J., Synofzik, M., Schölkopf, B., Schöls, L., Grosse-Wentrup, M.

Clinical Neurophysiology, 129(2):406-408, 2018 (article)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Inverse Reinforcement Learning via Nonparametric Spatio-Temporal Subgoal Modeling

Šošić, A., Rueckert, E., Peters, J., Zoubir, A., Koeppl, H.

Journal of Machine Learning Research, 19(69):1-45, 2018 (article)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Grip Stabilization of Novel Objects using Slip Prediction

Veiga, F., Peters, J., Hermans, T.

IEEE Transactions on Haptics, 2018 (article) In press

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Electrophysiological correlates of neurodegeneration in motor and non-motor brain regions in amyotrophic lateral sclerosis—implications for brain–computer interfacing

Kellmeyer, P., Grosse-Wentrup, M., Schulze-Bonhage, A., Ziemann, U., Ball, T.

Journal of Neural Engineering, 15(4):041003, IOP Publishing, 2018 (article)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Quantum machine learning: a classical perspective

Ciliberto, C., Herbster, M., Ialongo, A. D., Pontil, M., Rocchetto, A., Severini, S., Wossnig, L.

Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 474(2209):20170551, 2018 (article)

ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Kernel-based tests for joint independence

Pfister, N., Bühlmann, P., Schölkopf, B., Peters, J.

Journal of the Royal Statistical Society: Series B (Statistical Methodology), 80(1):5-31, 2018 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Prediction of Glucose Tolerance without an Oral Glucose Tolerance Test

Babbar, R., Heni, M., Peter, A., Hrabě de Angelis, M., Häring, H., Fritsche, A., Preissl, H., Schölkopf, B., Wagner, R.

Frontiers in Endocrinology, 9, pages: 82, 2018 (article)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Invariant Models for Causal Transfer Learning

Rojas-Carulla, M., Schölkopf, B., Turner, R., Peters, J.

Journal of Machine Learning Research, 19(36):1-34, 2018 (article)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
MOABB: Trustworthy algorithm benchmarking for BCIs

Jayaram, V., Barachant, A.

Journal of Neural Engineering, 15(6):066011, 2018 (article)

ei

link (url) DOI Project Page [BibTex]

link (url) DOI Project Page [BibTex]


no image
f-Divergence constrained policy improvement

Belousov, B., Peters, J.

Journal of Machine Learning Research, 2018 (article) Submitted

ei

Project Page [BibTex]

Project Page [BibTex]


no image
Phylogenetic convolutional neural networks in metagenomics

Fioravanti*, D., Giarratano*, Y., Maggio*, V., Agostinelli, C., Chierici, M., Jurman, G., Furlanello, C.

BMC Bioinformatics, 19(2):49 pages, 2018, *equal contribution (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Food specific inhibitory control under negative mood in binge-eating disorder: Evidence from a multimethod approach

Leehr, E. J., Schag, K., Dresler, T., Grosse-Wentrup, M., Hautzinger, M., Fallgatter, A. J., Zipfel, S., Giel, K. E., Ehlis, A.

International Journal of Eating Disorders, 51(2):112-123, Wiley Online Library, 2018 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Linking imaging to omics utilizing image-guided tissue extraction

Disselhorst, J. A., Krueger, M. A., Ud-Dean, S. M. M., Bezrukov, I., Jarboui, M. A., Trautwein, C., Traube, A., Spindler, C., Cotton, J. M., Leibfritz, D., Pichler, B. J.

Proceedings of the National Academy of Sciences, 115(13):E2980-E2987, 2018 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Discriminative Transfer Learning for General Image Restoration

Xiao, L., Heide, F., Heidrich, W., Schölkopf, B., Hirsch, M.

IEEE Transactions on Image Processing, 27(8):4091-4104, 2018 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Dissecting the synapse- and frequency-dependent network mechanisms of in vivo hippocampal sharp wave-ripples

Ramirez-Villegas, J. F., Willeke, K. F., Logothetis, N. K., Besserve, M.

Neuron, 100(5):1224-1240, 2018 (article)

ei

link (url) DOI Project Page [BibTex]

link (url) DOI Project Page [BibTex]


no image
Two-qubit causal structures and the geometry of positive qubit-maps

Kübler, J. M., Braun, D.

New Journal of Physics, 20(8):083015, 2018 (article)

ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
In-Hand Object Stabilization by Independent Finger Control

Veiga, F. F., Edin, B. B., Peters, J.

IEEE Transactions on Robotics, 2018 (article) Submitted

ei

Project Page [BibTex]

Project Page [BibTex]


no image
Visualizing and understanding Sum-Product Networks

Vergari, A., Di Mauro, N., Esposito, F.

Machine Learning, 2018 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Non-Equilibrium Relations for Bounded Rational Decision-Making in Changing Environments

Grau-Moya, J, Krüger, M, Braun, DA

Entropy, 20(1:1):1-28, January 2018 (article)

Abstract
Living organisms from single cells to humans need to adapt continuously to respond to changes in their environment. The process of behavioural adaptation can be thought of as improving decision-making performance according to some utility function. Here, we consider an abstract model of organisms as decision-makers with limited information-processing resources that trade off between maximization of utility and computational costs measured by a relative entropy, in a similar fashion to thermodynamic systems undergoing isothermal transformations. Such systems minimize the free energy to reach equilibrium states that balance internal energy and entropic cost. When there is a fast change in the environment, these systems evolve in a non-equilibrium fashion because they are unable to follow the path of equilibrium distributions. Here, we apply concepts from non-equilibrium thermodynamics to characterize decision-makers that adapt to changing environments under the assumption that the temporal evolution of the utility function is externally driven and does not depend on the decision-maker’s action. This allows one to quantify performance loss due to imperfect adaptation in a general manner and, additionally, to find relations for decision-making similar to Crooks’ fluctuation theorem and Jarzynski’s equality. We provide simulations of several exemplary decision and inference problems in the discrete and continuous domains to illustrate the new relations.

ei

DOI [BibTex]

DOI [BibTex]

2007


no image
HPLC analysis and pharmacokinetic study of quercitrin and isoquercitrin in rat plasma after administration of Hypericum japonicum thunb. extract.

Li, J., Wang, W., Zhang, L., Chen, H., Bi, S.

Biomedical Chromatography, 22(4):374-378, December 2007 (article)

Abstract
A simple HPLC method was developed for determination of quercitrin and isoquercitrin in rat plasma. Reversed-phase HPLC was employed for the quantitative analysis using kaempferol-3-O--d-glucopyranoside-7-O--l-rhamnoside as an internal standard. Following extraction from the plasma samples with ethyl acetate-isopropanol (95:5, v/v), these two compounds were successfully separated on a Luna C18 column (250 × 4.6 mm, 5 µm) with isocratic elution of acetonitrile-0.5% aqueous acetic acid (17:83, v/v) as the mobile phase. The flow-rate was set at 1 mL/min and the eluent was detected at 350 nm for both quercitrin and isoquercitrin. The method was linear over the studied ranges of 50-6000 and 50-5000 ng/mL for quercitrin and isoquercitrin, respectively. The intra- and inter-day precisions of the analysis were better than 13.1 and 13.2%, respectively. The lower limits of quantitation for quercitrin and isoquercitrin in plasma were both of 50 ng/mL. The mean extraction recoveries were 73 and 61% for quercitrin and i soquercitrin, respectively. The validated method was successfully applied to pharmacokinetic studies of the two analytes in rat plasma after the oral administration of Hypericum japonicum thunb. ethanol extract.

ei

Web DOI [BibTex]

2007



no image
Graph sharpening plus graph integration: a synergy that improves protein functional classification

Shin, HH., Lisewski, AM., Lichtarge, O.

Bioinformatics, 23(23):3217-3224, December 2007 (article)

ei

Web DOI [BibTex]

Web DOI [BibTex]