Header logo is


2018


Oncilla robot: a versatile open-source quadruped research robot with compliant pantograph legs
Oncilla robot: a versatile open-source quadruped research robot with compliant pantograph legs

Sproewitz, A., Tuleu, A., Ajallooeian, M., Vespignani, M., Moeckel, R., Eckert, P., D’Haene, M., Degrave, J., Nordmann, A., Schrauwen, B., Steil, J., Ijspeert, A. J.

Frontiers in Robotics and AI, 5(67), June 2018, arXiv: 1803.06259 (article)

Abstract
We present Oncilla robot, a novel mobile, quadruped legged locomotion machine. This large-cat sized, 5.1 robot is one of a kind of a recent, bioinspired legged robot class designed with the capability of model-free locomotion control. Animal legged locomotion in rough terrain is clearly shaped by sensor feedback systems. Results with Oncilla robot show that agile and versatile locomotion is possible without sensory signals to some extend, and tracking becomes robust when feedback control is added (Ajaoolleian 2015). By incorporating mechanical and control blueprints inspired from animals, and by observing the resulting robot locomotion characteristics, we aim to understand the contribution of individual components. Legged robots have a wide mechanical and control design parameter space, and a unique potential as research tools to investigate principles of biomechanics and legged locomotion control. But the hardware and controller design can be a steep initial hurdle for academic research. To facilitate the easy start and development of legged robots, Oncilla-robot's blueprints are available through open-source. [...]

dlg

link (url) DOI Project Page [BibTex]

2018


link (url) DOI Project Page [BibTex]


no image
Nonlinear decoding of a complex movie from the mammalian retina

Botella-Soler, V., Deny, S., Martius, G., Marre, O., Tkačik, G.

PLOS Computational Biology, 14(5):1-27, Public Library of Science, May 2018 (article)

Abstract
Author summary Neurons in the retina transform patterns of incoming light into sequences of neural spikes. We recorded from ∼100 neurons in the rat retina while it was stimulated with a complex movie. Using machine learning regression methods, we fit decoders to reconstruct the movie shown from the retinal output. We demonstrated that retinal code can only be read out with a low error if decoders make use of correlations between successive spikes emitted by individual neurons. These correlations can be used to ignore spontaneous spiking that would, otherwise, cause even the best linear decoders to “hallucinate” nonexistent stimuli. This work represents the first high resolution single-trial full movie reconstruction and suggests a new paradigm for separating spontaneous from stimulus-driven neural activity.

al

DOI [BibTex]

DOI [BibTex]

2017


Spinal joint compliance and actuation in a simulated bounding quadruped robot
Spinal joint compliance and actuation in a simulated bounding quadruped robot

Pouya, S., Khodabakhsh, M., Sproewitz, A., Ijspeert, A.

{Autonomous Robots}, pages: 437–452, Kluwer Academic Publishers, Springer, Dordrecht, New York, NY, Febuary 2017 (article)

dlg

link (url) DOI Project Page [BibTex]

2017


link (url) DOI Project Page [BibTex]


no image
Self-Organized Behavior Generation for Musculoskeletal Robots

Der, R., Martius, G.

Frontiers in Neurorobotics, 11, pages: 8, 2017 (article)

al

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Evaluation of the passive dynamics of compliant legs with inertia
Evaluation of the passive dynamics of compliant legs with inertia

Györfi, B.

University of Applied Science Pforzheim, Germany, 2017 (mastersthesis)

dlg

[BibTex]

[BibTex]

2008


Learning to Move in Modular Robots using Central Pattern Generators and Online Optimization
Learning to Move in Modular Robots using Central Pattern Generators and Online Optimization

Spröwitz, A., Moeckel, R., Maye, J., Ijspeert, A. J.

The International Journal of Robotics Research, 27(3-4):423-443, 2008 (article)

Abstract
This article addresses the problem of how modular robotics systems, i.e. systems composed of multiple modules that can be configured into different robotic structures, can learn to locomote. In particular, we tackle the problems of online learning, that is, learning while moving, and the problem of dealing with unknown arbitrary robotic structures. We propose a framework for learning locomotion controllers based on two components: a central pattern generator (CPG) and a gradient-free optimization algorithm referred to as Powell's method. The CPG is implemented as a system of coupled nonlinear oscillators in our YaMoR modular robotic system, with one oscillator per module. The nonlinear oscillators are coupled together across modules using Bluetooth communication to obtain specific gaits, i.e. synchronized patterns of oscillations among modules. Online learning involves running the Powell optimization algorithm in parallel with the CPG model, with the speed of locomotion being the criterion to be optimized. Interesting aspects of the optimization include the fact that it is carried out online, the robots do not require stopping or resetting and it is fast. We present results showing the interesting properties of this framework for a modular robotic system. In particular, our CPG model can readily be implemented in a distributed system, it is computationally cheap, it exhibits limit cycle behavior (temporary perturbations are rapidly forgotten), it produces smooth trajectories even when control parameters are abruptly changed and it is robust against imperfect communication among modules. We also present results of learning to move with three different robot structures. Interesting locomotion modes are obtained after running the optimization for less than 60 minutes.

dlg

link (url) DOI [BibTex]

2008


link (url) DOI [BibTex]