Header logo is


2019


Learning to Explore in Motion and Interaction Tasks
Learning to Explore in Motion and Interaction Tasks

Bogdanovic, M., Righetti, L.

Proceedings 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages: 2686-2692, IEEE, 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), November 2019, ISSN: 2153-0866 (conference)

Abstract
Model free reinforcement learning suffers from the high sampling complexity inherent to robotic manipulation or locomotion tasks. Most successful approaches typically use random sampling strategies which leads to slow policy convergence. In this paper we present a novel approach for efficient exploration that leverages previously learned tasks. We exploit the fact that the same system is used across many tasks and build a generative model for exploration based on data from previously solved tasks to improve learning new tasks. The approach also enables continuous learning of improved exploration strategies as novel tasks are learned. Extensive simulations on a robot manipulator performing a variety of motion and contact interaction tasks demonstrate the capabilities of the approach. In particular, our experiments suggest that the exploration strategy can more than double learning speed, especially when rewards are sparse. Moreover, the algorithm is robust to task variations and parameter tuning, making it beneficial for complex robotic problems.

mg

DOI [BibTex]

2019


DOI [BibTex]


A Learnable Safety Measure
A Learnable Safety Measure

Heim, S., Rohr, A. V., Trimpe, S., Badri-Spröwitz, A.

Conference on Robot Learning, November 2019 (conference) Accepted

dlg ics

Arxiv [BibTex]

Arxiv [BibTex]


no image
Robust Humanoid Locomotion Using Trajectory Optimization and Sample-Efficient Learning

Yeganegi, M. H., Khadiv, M., Moosavian, S. A. A., Zhu, J., Prete, A. D., Righetti, L.

Proceedings International Conference on Humanoid Robots, IEEE, 2019 IEEE-RAS International Conference on Humanoid Robots, October 2019 (conference)

Abstract
Trajectory optimization (TO) is one of the most powerful tools for generating feasible motions for humanoid robots. However, including uncertainties and stochasticity in the TO problem to generate robust motions can easily lead to intractable problems. Furthermore, since the models used in TO have always some level of abstraction, it can be hard to find a realistic set of uncertainties in the model space. In this paper we leverage a sample-efficient learning technique (Bayesian optimization) to robustify TO for humanoid locomotion. The main idea is to use data from full-body simulations to make the TO stage robust by tuning the cost weights. To this end, we split the TO problem into two phases. The first phase solves a convex optimization problem for generating center of mass (CoM) trajectories based on simplified linear dynamics. The second stage employs iterative Linear-Quadratic Gaussian (iLQG) as a whole-body controller to generate full body control inputs. Then we use Bayesian optimization to find the cost weights to use in the first stage that yields robust performance in the simulation/experiment, in the presence of different disturbance/uncertainties. The results show that the proposed approach is able to generate robust motions for different sets of disturbances and uncertainties.

mg

https://arxiv.org/abs/1907.04616 link (url) [BibTex]

https://arxiv.org/abs/1907.04616 link (url) [BibTex]


Trunk Pitch Oscillations for Joint Load Redistribution in Humans and Humanoid Robots
Trunk Pitch Oscillations for Joint Load Redistribution in Humans and Humanoid Robots

Drama, Ö., Badri-Spröwitz, A.

Proceedings International Conference on Humanoid Robots, Humanoids, September 2019 (conference) Accepted

dlg

link (url) [BibTex]

link (url) [BibTex]


The positive side of damping
The positive side of damping

Heim, S., Millard, M., Le Mouel, C., Sproewitz, A.

Proceedings of AMAM, The 9th International Symposium on Adaptive Motion of Animals and Machines, August 2019 (conference) Accepted

dlg

[BibTex]

[BibTex]


Soft Continuous Surface for Micromanipulation driven by Light-controlled Hydrogels
Soft Continuous Surface for Micromanipulation driven by Light-controlled Hydrogels

Choi, E., Jeong, H., Qiu, T., Fischer, P., Palagi, S.

4th IEEE International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS), July 2019 (conference)

Abstract
Remotely controlled, automated actuation and manipulation at the microscale is essential for a number of micro-manufacturing, biology, and lab-on-a-chip applications. To transport and manipulate micro-objects, arrays of remotely controlled micro-actuators are required, which, in turn, typically require complex and expensive solid-state chips. Here, we show that a continuous surface can function as a highly parallel, many-degree of freedom, wirelessly-controlled microactuator with seamless deformation. The soft continuous surface is based on a hydrogel that undergoes a volume change in response to applied light. The fabrication of the hydrogels and the characterization of their optical and thermomechanical behaviors are reported. The temperature-dependent localized deformation of the hydrogel is also investigated by numerical simulations. Static and dynamic deformations are obtained in the soft material by projecting light fields at high spatial resolution onto the surface. By controlling such deformations in open loop and especially closed loop, automated photoactuation is achieved. The surface deformations are then exploited to examine how inert microbeads can be manipulated autonomously on the surface. We believe that the proposed approach suggests ways to implement universal 2D micromanipulation schemes that can be useful for automation in microfabrication and lab-on-a-chip applications.

pf

[BibTex]

[BibTex]


Soft Phantom for the Training of Renal Calculi Diagnostics and  Lithotripsy
Soft Phantom for the Training of Renal Calculi Diagnostics and Lithotripsy

Li., D., Suarez-Ibarrola, R., Choi, E., Jeong, M., Gratzke, C., Miernik, A., Fischer, P., Qiu, T.

41st Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), July 2019 (conference)

Abstract
Organ models are important for medical training and surgical planning. With the fast development of additive fabrication technologies, including 3D printing, the fabrication of 3D organ phantoms with precise anatomical features becomes possible. Here, we develop the first high-resolution kidney phantom based on soft material assembly, by combining 3D printing and polymer molding techniques. The phantom exhibits both the detailed anatomy of a human kidney and the elasticity of soft tissues. The phantom assembly can be separated into two parts on the coronal plane, thus large renal calculi are readily placed at any desired location of the calyx. With our sealing method, the assembled phantom withstands a hydraulic pressure that is four times the normal intrarenal pressure, thus it allows the simulation of medical procedures under realistic pressure conditions. The medical diagnostics of the renal calculi is performed by multiple imaging modalities, including X-ray, ultrasound imaging and endoscopy. The endoscopic lithotripsy is also successfully performed on the phantom. The use of a multifunctional soft phantom assembly thus shows great promise for the simulation of minimally invasive medical procedures under realistic conditions.

pf

[BibTex]

[BibTex]


A Magnetic Actuation System for the  Active Microrheology in Soft Biomaterials
A Magnetic Actuation System for the Active Microrheology in Soft Biomaterials

Jeong, M., Choi, E., Li., D., Palagi, S., Fischer, P., Qiu, T.

4th IEEE International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS), July 2019 (conference)

Abstract
Microrheology is a key technique to characterize soft materials at small scales. The microprobe is wirelessly actuated and therefore typically only low forces or torques can be applied, which limits the range of the applied strain. Here, we report a new magnetic actuation system for microrheology consisting of an array of rotating permanent magnets, which achieves a rotating magnetic field with a spatially homogeneous high field strength of ~100 mT in a working volume of ~20×20×20 mm3. Compared to a traditional electromagnetic coil system, the permanent magnet assembly is portable and does not require cooling, and it exerts a large magnetic torque on the microprobe that is an order of magnitude higher than previous setups. Experimental results demonstrate that the measurement range of the soft gels’ elasticity covers at least five orders of magnitude. With the large actuation torque, it is also possible to study the fracture mechanics of soft biomaterials at small scales.

pf

[BibTex]

[BibTex]


no image
Efficient Humanoid Contact Planning using Learned Centroidal Dynamics Prediction

Lin, Y., Ponton, B., Righetti, L., Berenson, D.

International Conference on Robotics and Automation (ICRA), pages: 5280-5286, IEEE, May 2019 (conference)

mg

DOI [BibTex]

DOI [BibTex]


Leveraging Contact Forces for Learning to Grasp
Leveraging Contact Forces for Learning to Grasp

Merzic, H., Bogdanovic, M., Kappler, D., Righetti, L., Bohg, J.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) 2019, IEEE, International Conference on Robotics and Automation, May 2019 (inproceedings)

Abstract
Grasping objects under uncertainty remains an open problem in robotics research. This uncertainty is often due to noisy or partial observations of the object pose or shape. To enable a robot to react appropriately to unforeseen effects, it is crucial that it continuously takes sensor feedback into account. While visual feedback is important for inferring a grasp pose and reaching for an object, contact feedback offers valuable information during manipulation and grasp acquisition. In this paper, we use model-free deep reinforcement learning to synthesize control policies that exploit contact sensing to generate robust grasping under uncertainty. We demonstrate our approach on a multi-fingered hand that exhibits more complex finger coordination than the commonly used two- fingered grippers. We conduct extensive experiments in order to assess the performance of the learned policies, with and without contact sensing. While it is possible to learn grasping policies without contact sensing, our results suggest that contact feedback allows for a significant improvement of grasping robustness under object pose uncertainty and for objects with a complex shape.

am mg

video arXiv [BibTex]

video arXiv [BibTex]


Quantifying the Robustness of Natural Dynamics: a Viability Approach
Quantifying the Robustness of Natural Dynamics: a Viability Approach

Heim, S., Sproewitz, A.

Proceedings of Dynamic Walking , Dynamic Walking , 2019 (conference) Accepted

dlg

Submission DW2019 [BibTex]

Submission DW2019 [BibTex]

2013


no image
AGILITY – Dynamic Full Body Locomotion and Manipulation with Autonomous Legged Robots

Hutter, M., Bloesch, M., Buchli, J., Semini, C., Bazeille, S., Righetti, L., Bohg, J.

In 2013 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), pages: 1-4, IEEE, Linköping, Sweden, 2013 (inproceedings)

mg

link (url) DOI [BibTex]

2013


link (url) DOI [BibTex]


no image
Learning Objective Functions for Manipulation

Kalakrishnan, M., Pastor, P., Righetti, L., Schaal, S.

In 2013 IEEE International Conference on Robotics and Automation, IEEE, Karlsruhe, Germany, 2013 (inproceedings)

Abstract
We present an approach to learning objective functions for robotic manipulation based on inverse reinforcement learning. Our path integral inverse reinforcement learning algorithm can deal with high-dimensional continuous state-action spaces, and only requires local optimality of demonstrated trajectories. We use L 1 regularization in order to achieve feature selection, and propose an efficient algorithm to minimize the resulting convex objective function. We demonstrate our approach by applying it to two core problems in robotic manipulation. First, we learn a cost function for redundancy resolution in inverse kinematics. Second, we use our method to learn a cost function over trajectories, which is then used in optimization-based motion planning for grasping and manipulation tasks. Experimental results show that our method outperforms previous algorithms in high-dimensional settings.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Learning Task Error Models for Manipulation

Pastor, P., Kalakrishnan, M., Binney, J., Kelly, J., Righetti, L., Sukhatme, G. S., Schaal, S.

In 2013 IEEE Conference on Robotics and Automation, IEEE, Karlsruhe, Germany, 2013 (inproceedings)

Abstract
Precise kinematic forward models are important for robots to successfully perform dexterous grasping and manipulation tasks, especially when visual servoing is rendered infeasible due to occlusions. A lot of research has been conducted to estimate geometric and non-geometric parameters of kinematic chains to minimize reconstruction errors. However, kinematic chains can include non-linearities, e.g. due to cable stretch and motor-side encoders, that result in significantly different errors for different parts of the state space. Previous work either does not consider such non-linearities or proposes to estimate non-geometric parameters of carefully engineered models that are robot specific. We propose a data-driven approach that learns task error models that account for such unmodeled non-linearities. We argue that in the context of grasping and manipulation, it is sufficient to achieve high accuracy in the task relevant state space. We identify this relevant state space using previously executed joint configurations and learn error corrections for those. Therefore, our system is developed to generate subsequent executions that are similar to previous ones. The experiments show that our method successfully captures the non-linearities in the head kinematic chain (due to a counterbalancing spring) and the arm kinematic chains (due to cable stretch) of the considered experimental platform, see Fig. 1. The feasibility of the presented error learning approach has also been evaluated in independent DARPA ARM-S testing contributing to successfully complete 67 out of 72 grasping and manipulation tasks.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]

2011


no image
Learning Force Control Policies for Compliant Manipulation

Kalakrishnan, M., Righetti, L., Pastor, P., Schaal, S.

In 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages: 4639-4644, IEEE, San Francisco, USA, sep 2011 (inproceedings)

Abstract
Developing robots capable of fine manipulation skills is of major importance in order to build truly assistive robots. These robots need to be compliant in their actuation and control in order to operate safely in human environments. Manipulation tasks imply complex contact interactions with the external world, and involve reasoning about the forces and torques to be applied. Planning under contact conditions is usually impractical due to computational complexity, and a lack of precise dynamics models of the environment. We present an approach to acquiring manipulation skills on compliant robots through reinforcement learning. The initial position control policy for manipulation is initialized through kinesthetic demonstration. We augment this policy with a force/torque profile to be controlled in combination with the position trajectories. We use the Policy Improvement with Path Integrals (PI2) algorithm to learn these force/torque profiles by optimizing a cost function that measures task success. We demonstrate our approach on the Barrett WAM robot arm equipped with a 6-DOF force/torque sensor on two different manipulation tasks: opening a door with a lever door handle, and picking up a pen off the table. We show that the learnt force control policies allow successful, robust execution of the tasks.

am mg

link (url) DOI [BibTex]

2011


link (url) DOI [BibTex]


no image
Control of legged robots with optimal distribution of contact forces

Righetti, L., Buchli, J., Mistry, M., Schaal, S.

In 2011 11th IEEE-RAS International Conference on Humanoid Robots, pages: 318-324, IEEE, Bled, Slovenia, 2011 (inproceedings)

Abstract
The development of agile and safe humanoid robots require controllers that guarantee both high tracking performance and compliance with the environment. More specifically, the control of contact interaction is of crucial importance for robots that will actively interact with their environment. Model-based controllers such as inverse dynamics or operational space control are very appealing as they offer both high tracking performance and compliance. However, while widely used for fully actuated systems such as manipulators, they are not yet standard controllers for legged robots such as humanoids. Indeed such robots are fundamentally different from manipulators as they are underactuated due to their floating-base and subject to switching contact constraints. In this paper we present an inverse dynamics controller for legged robots that use torque redundancy to create an optimal distribution of contact constraints. The resulting controller is able to minimize, given a desired motion, any quadratic cost of the contact constraints at each instant of time. In particular we show how this can be used to minimize tangential forces during locomotion, therefore significantly improving the locomotion of legged robots on difficult terrains. In addition to the theoretical result, we present simulations of a humanoid and a quadruped robot, as well as experiments on a real quadruped robot that demonstrate the advantages of the controller.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Learning Motion Primitive Goals for Robust Manipulation

Stulp, F., Theodorou, E., Kalakrishnan, M., Pastor, P., Righetti, L., Schaal, S.

In IEEE/RSJ International Conference on Intelligent Robots and Systems, pages: 325-331, IEEE, San Francisco, USA, sep 2011 (inproceedings)

Abstract
Applying model-free reinforcement learning to manipulation remains challenging for several reasons. First, manipulation involves physical contact, which causes discontinuous cost functions. Second, in manipulation, the end-point of the movement must be chosen carefully, as it represents a grasp which must be adapted to the pose and shape of the object. Finally, there is uncertainty in the object pose, and even the most carefully planned movement may fail if the object is not at the expected position. To address these challenges we 1) present a simplified, computationally more efficient version of our model-free reinforcement learning algorithm PI2; 2) extend PI2 so that it simultaneously learns shape parameters and goal parameters of motion primitives; 3) use shape and goal learning to acquire motion primitives that are robust to object pose uncertainty. We evaluate these contributions on a manipulation platform consisting of a 7-DOF arm with a 4-DOF hand.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Inverse Dynamics Control of Floating-Base Robots with External Constraints: a Unified View

Righetti, L., Buchli, J., Mistry, M., Schaal, S.

In 2011 IEEE International Conference on Robotics and Automation, pages: 1085-1090, IEEE, Shanghai, China, 2011 (inproceedings)

Abstract
Inverse dynamics controllers and operational space controllers have proved to be very efficient for compliant control of fully actuated robots such as fixed base manipulators. However legged robots such as humanoids are inherently different as they are underactuated and subject to switching external contact constraints. Recently several methods have been proposed to create inverse dynamics controllers and operational space controllers for these robots. In an attempt to compare these different approaches, we develop a general framework for inverse dynamics control and show that these methods lead to very similar controllers. We are then able to greatly simplify recent whole-body controllers based on operational space approaches using kinematic projections, bringing them closer to efficient practical implementations. We also generalize these controllers such that they can be optimal under an arbitrary quadratic cost in the commands.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Operational Space Control of Constrained and Underactuated Systems

Mistry, M., Righetti, L.

In Proceedings of Robotics: Science and Systems, Los Angeles, CA, USA, June 2011 (inproceedings)

Abstract
The operational space formulation (Khatib, 1987), applied to rigid-body manipulators, describes how to decouple task-space and null-space dynamics, and write control equations that correspond only to forces at the end-effector or, alternatively, only to motion within the null-space. We would like to apply this useful theory to modern humanoids and other legged systems, for manipulation or similar tasks, however these systems present additional challenges due to their underactuated floating bases and contact states that can dynamically change. In recent work, Sentis et al. derived controllers for such systems by implementing a task Jacobian projected into a space consistent with the supporting constraints and underactuation (the so called "support consistent reduced Jacobian"). Here, we take a new approach to derive operational space controllers for constrained underactuated systems, by first considering the operational space dynamics within "projected inverse-dynamics" (Aghili, 2005), and subsequently resolving underactuation through the addition of dynamically consistent control torques. Doing so results in a simplified control solution compared with previous results, and importantly yields several new insights into the underlying problem of operational space control in constrained environments: 1) Underactuated systems, such as humanoid robots, cannot in general completely decouple task and null-space dynamics. However, 2) there may exist an infinite number of control solutions to realize desired task-space dynamics, and 3) these solutions involve the addition of dynamically consistent null-space motion or constraint forces (or combinations of both). In light of these findings, we present several possible control solutions, with varying optimization criteria, and highlight some of their practical consequences.

mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Online movement adaptation based on previous sensor experiences

Pastor, P., Righetti, L., Kalakrishnan, M., Schaal, S.

In 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages: 365-371, IEEE, San Francisco, USA, sep 2011 (inproceedings)

Abstract
Personal robots can only become widespread if they are capable of safely operating among humans. In uncertain and highly dynamic environments such as human households, robots need to be able to instantly adapt their behavior to unforseen events. In this paper, we propose a general framework to achieve very contact-reactive motions for robotic grasping and manipulation. Associating stereotypical movements to particular tasks enables our system to use previous sensor experiences as a predictive model for subsequent task executions. We use dynamical systems, named Dynamic Movement Primitives (DMPs), to learn goal-directed behaviors from demonstration. We exploit their dynamic properties by coupling them with the measured and predicted sensor traces. This feedback loop allows for online adaptation of the movement plan. Our system can create a rich set of possible motions that account for external perturbations and perception uncertainty to generate truly robust behaviors. As an example, we present an application to grasping with the WAM robot arm.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]

2008


no image
Pattern generators with sensory feedback for the control of quadruped locomotion

Righetti, L., Ijspeert, A.

In 2008 IEEE International Conference on Robotics and Automation, pages: 819-824, IEEE, Pasadena, USA, 2008 (inproceedings)

Abstract
Central pattern generators (CPGs) are becoming a popular model for the control of locomotion of legged robots. Biological CPGs are neural networks responsible for the generation of rhythmic movements, especially locomotion. In robotics, a systematic way of designing such CPGs as artificial neural networks or systems of coupled oscillators with sensory feedback inclusion is still missing. In this contribution, we present a way of designing CPGs with coupled oscillators in which we can independently control the ascending and descending phases of the oscillations (i.e. the swing and stance phases of the limbs). Using insights from dynamical system theory, we construct generic networks of oscillators able to generate several gaits under simple parameter changes. Then we introduce a systematic way of adding sensory feedback from touch sensors in the CPG such that the controller is strongly coupled with the mechanical system it controls. Finally we control three different simulated robots (iCub, Aibo and Ghostdog) using the same controller to show the effectiveness of the approach. Our simulations prove the importance of independent control of swing and stance duration. The strong mutual coupling between the CPG and the robot allows for more robust locomotion, even under non precise parameters and non-flat environment.

mg

link (url) DOI [BibTex]

2008


link (url) DOI [BibTex]


no image
Experimental Study of Limit Cycle and Chaotic Controllers for the Locomotion of Centipede Robots

Matthey, L., Righetti, L., Ijspeert, A.

In 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages: 1860-1865, IEEE, Nice, France, sep 2008 (inproceedings)

Abstract
In this contribution we present a CPG (central pattern generator) controller based on coupled Rossler systems. It is able to generate both limit cycle and chaotic behaviors through bifurcation. We develop an experimental test bench to measure quantitatively the performance of different controllers on unknown terrains of increasing difficulty. First, we show that for flat terrains, open loop limit cycle systems are the most efficient (in terms of speed of locomotion) but that they are quite sensitive to environmental changes. Second, we show that sensory feedback is a crucial addition for unknown terrains. Third, we show that the chaotic controller with sensory feedback outperforms the other controllers in very difficult terrains and actually promotes the emergence of short synchronized movement patterns. All that is done using an unified framework for the generation of limit cycle and chaotic behaviors, where a simple parameter change can switch from one behavior to the other through bifurcation. Such flexibility would allow the automatic adaptation of the robot locomotion strategy to the terrain uncertainty.

mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
A Dynamical System for Online Learning of Periodic Movements of Unknown Waveform and Frequency

Gams, A., Righetti, L., Ijspeert, A., Lenarčič, J.

In 2008 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, pages: 85-90, IEEE, Scottsdale, USA, October 2008 (inproceedings)

Abstract
The paper presents a two-layered system for learning and encoding a periodic signal onto a limit cycle without any knowledge on the waveform and the frequency of the signal, and without any signal processing. The first dynamical system is responsible for extracting the main frequency of the input signal. It is based on adaptive frequency phase oscillators in a feedback structure, enabling us to extract separate frequency components without any signal processing, as all of the processing is embedded in the dynamics of the system itself. The second dynamical system is responsible for learning of the waveform. It has a built-in learning algorithm based on locally weighted regression, which adjusts the weights according to the amplitude of the input signal. By combining the output of the first system with the input of the second system we can rapidly teach new trajectories to robots. The systems works online for any periodic signal and can be applied in parallel to multiple dimensions. Furthermore, it can adapt to changes in frequency and shape, e.g. to non-stationary signals, and is computationally inexpensive. Results using simulated and hand-generated input signals, along with applying the algorithm to a HOAP-2 humanoid robot are presented.

mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Passive compliant quadruped robot using central pattern generators for locomotion control

Rutishauser, S., Sproewitz, A., Righetti, L., Ijspeert, A.

In 2008 IEEE International Conference on Biomedical Robotics and Biomechatronics, pages: 710-715, IEEE, Scottsdale, USA, October 2008 (inproceedings)

Abstract
We present a new quadruped robot, ldquoCheetahrdquo, featuring three-segment pantographic legs with passive compliant knee joints. Each leg has two degrees of freedom - knee and hip joint can be actuated using proximal mounted RC servo motors, force transmission to the knee is achieved by means of a bowden cable mechanism. Simple electronics to command the actuators from a desktop computer have been designed in order to test the robot. A Central Pattern Generator (CPG) network has been implemented to generate different gaits. A parameter space search was performed and tested on the robot to optimize forward velocity.

mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
A modular bio-inspired architecture for movement generation for the infant-like robot iCub

Degallier, S., Righetti, L., Natale, L., Nori, F., Metta, G., Ijspeert, A.

In 2008 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, pages: 795-800, IEEE, Scottsdale, USA, October 2008 (inproceedings)

Abstract
Movement generation in humans appears to be processed through a three-layered architecture, where each layer corresponds to a different level of abstraction in the representation of the movement. In this article, we will present an architecture reflecting this organization and based on a modular approach to human movement generation. We will show that our architecture is well suited for the online generation and modulation of motor behaviors, but also for switching between motor behaviors. This will be illustrated respectively through an interactive drumming task and through switching between reaching and crawling.

mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]

2007


no image
Hand placement during quadruped locomotion in a humanoid robot: A dynamical system approach

Degallier, S., Righetti, L., Ijspeert, A.

In 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages: 2047-2052, IEEE, San Diego, USA, 2007 (inproceedings)

Abstract
Locomotion on an irregular surface is a challenging task in robotics. Among different problems to solve to obtain robust locomotion, visually guided locomotion and accurate foot placement are of crucial importance. Robust controllers able to adapt to sensory-motor feedbacks, in particular to properly place feet on specific locations, are thus needed. Dynamical systems are well suited for this task as any online modification of the parameters leads to a smooth adaptation of the trajectories, allowing a safe integration of sensory-motor feedback. In this contribution, as a first step in the direction of locomotion on irregular surfaces, we present a controller that allows hand placement during crawling in a simulated humanoid robot. The goal of the controller is to superimpose rhythmic movements for crawling with discrete (i.e. short-term) modulations of the hand placements to reach specific marks on the ground.

mg

link (url) DOI [BibTex]

2007


link (url) DOI [BibTex]


no image
Lower body realization of the baby humanoid - ‘iCub’

Tsagarakis, N., Becchi, F., Righetti, L., Ijspeert, A., Caldwell, D.

In 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages: 3616-3622, IEEE, San Diego, USA, 2007 (inproceedings)

Abstract
Nowadays, the understanding of the human cognition and it application to robotic systems forms a great challenge of research. The iCub is a robotic platform that was developed within the RobotCub European project to provide the cognition research community with an open baby- humanoid platform for understanding and development of cognitive systems. In this paper we present the design requirements and mechanical realization of the lower body developed for the "iCub". In particular the leg and the waist mechanisms adopted for lower body to match the size and physical abilities of a 2 frac12 year old human baby are introduced.

mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]

2004


no image
Operating system support for interface virtualisation of reconfigurable coprocessors

Vuletic, M., Righetti, L., Pozzi, L., Ienne, P.

In In Proceedings of the Design, Automation and Test in Europe Conference and Exhibition, pages: 748-749, IEEE, Paris, France, 2004 (inproceedings)

Abstract
Reconfigurable systems-on-chip (SoC) consist of large field programmable gate arrays (FPGAs) and standard processors. The reconfigurable logic can be used for application-specific coprocessors to speedup execution of applications. The widespread use is limited by the complexity of interfacing software applications with coprocessors. We present a virtualization layer that lowers the interfacing complexity and improves the portability. The layer shifts the burden of moving data between processor and coprocessor from the programmer to the operating system (OS). A reconfigurable SoC running Linux is used to prove the concept.

mg

link (url) DOI [BibTex]

2004


link (url) DOI [BibTex]

2003


no image
Evolution of Fault-tolerant Self-replicating Structures

Righetti, L., Shokur, S., Capcarre, M.

In Advances in Artificial Life, pages: 278-288, Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2003 (inproceedings)

Abstract
Designed and evolved self-replicating structures in cellular automata have been extensively studied in the past as models of Artificial Life. However, CAs, unlike their biological counterpart, are very brittle: any faulty cell usually leads to the complete destruction of any emerging structures, let alone self-replicating structures. A way to design fault-tolerant structures based on error-correcting-code has been presented recently [1], but it required a cumbersome work to be put into practice. In this paper, we get back to the original inspiration for these works, nature, and propose a way to evolve self-replicating structures, faults here being only an idiosyncracy of the environment.

mg

link (url) DOI [BibTex]

2003


link (url) DOI [BibTex]