ei
Schmidt, H., Brendle, C., Schraml, C., Martirosian, P., Bezrukov, I., Hetzel, J., Müller, M., Sauter, A., Claussen, C., Pfannenberg, C., Schwenzer, N.
Correlation of Simultaneously Acquired Diffusion-Weighted Imaging and 2-Deoxy-[18F] fluoro-2-D-glucose Positron Emission Tomography of Pulmonary Lesions in a Dedicated Whole-Body Magnetic Resonance/Positron Emission Tomography System
Investigative Radiology, 48(5):247-255, May 2013 (article)
ei
Lemeire, J., Janzing, D.
Replacing Causal Faithfulness with Algorithmic Independence of Conditionals
Minds and Machines, 23(2):227-249, May 2013 (article)
ei
Balduzzi, D., Tononi, G.
What can neurons do for their brain? Communicate selectivity with bursts
Theory in Biosciences , 132(1):27-39, Springer, March 2013 (article)
ei
Boularias, A., Chaib-draa, B.
Apprenticeship Learning with Few Examples
Neurocomputing, 104, pages: 83-96, March 2013 (article)
ei
ps
pn
Hennig, P., Kiefel, M.
Quasi-Newton Methods: A New Direction
Journal of Machine Learning Research, 14(1):843-865, March 2013 (article)
ei
Cavusoglu, M., Pohmann, R., Burger, H. C., Uludag, K.
Regional effects of magnetization dispersion on quantitative perfusion imaging for pulsed and continuous arterial spin labeling
Magnetic Resonance in Medicine, 69(2):524-530, Febuary 2013 (article)
ei
Sra, S., Karp, D.
The multivariate Watson distribution: Maximum-likelihood estimation and other aspects
Journal of Multivariate Analysis, 114, pages: 256-269, February 2013 (article)
ei
Maier, M., von Luxburg, U., Hein, M.
How the result of graph clustering methods depends on the construction of the graph
ESAIM: Probability & Statistics, 17, pages: 370-418, January 2013 (article)
ei
Balduzzi, D.
Falsification and future performance
In Algorithmic Probability and Friends. Bayesian Prediction and Artificial Intelligence, 7070, pages: 65-78, Lecture Notes in Computer Science, Springer, Berlin, Germany, Solomonoff 85th Memorial Conference, January 2013 (inproceedings)
ei
Sra, S.
Explicit eigenvalues of certain scaled trigonometric matrices
Linear Algebra and its Applications, 438(1):173-181, January 2013 (article)
ei
Gerhard, H., Wichmann, F., Bethge, M.
How Sensitive Is the Human Visual System to the Local Statistics of Natural Images?
PLoS Computational Biology, 9(1):e1002873, January 2013 (article)
ei
Goris, R., Putzeys, T., Wagemans, J., Wichmann, F.
A neural population model for visual pattern detection
Psychological Review, 120(3):472–496, 2013 (article)
ei
Gopalan, N., Deisenroth, M., Peters, J.
Feedback Error Learning for Rhythmic Motor Primitives
In Proceedings of 2013 IEEE International Conference on Robotics and Automation (ICRA 2013), pages: 1317-1322, 2013 (inproceedings)
ei
Lopez-Paz, D., Hernandez-Lobato, J., Ghahramani, Z.
Gaussian Process Vine Copulas for Multivariate Dependence
In Proceedings of the 30th International Conference on Machine Learning, W&CP 28(2), pages: 10-18, (Editors: S Dasgupta and D McAllester), JMLR, ICML, 2013, Poster:
http://people.tuebingen.mpg.de/dlopez/papers/icml2013_gpvine_poster.pdf (inproceedings)
ei
Grosse-Wentrup, M., Schölkopf, B.
A Review of Performance Variations in SMR-Based Brain–Computer Interfaces (BCIs)
In Brain-Computer Interface Research, pages: 39-51, 4, SpringerBriefs in Electrical and Computer Engineering, (Editors: Guger, C., Allison, B. Z. and Edlinger, G.), Springer, 2013 (inbook)
ei
pn
Lopez-Paz, D., Hennig, P., Schölkopf, B.
The Randomized Dependence Coefficient
In Advances in Neural Information Processing Systems 26, pages: 1-9, (Editors: C.J.C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K.Q. Weinberger), 27th Annual Conference on Neural Information Processing Systems (NIPS), 2013 (inproceedings)
ei
Harmeling, S., Hirsch, M., Schölkopf, B.
On a link between kernel mean maps and Fraunhofer diffraction, with an application to super-resolution beyond the diffraction limit
In IEEE Conference on Computer Vision and Pattern Recognition, pages: 1083-1090, IEEE, CVPR, 2013 (inproceedings)
ei
Dinuzzo, F., Ong, C., Fukumizu, K.
Output Kernel Learning Methods
In International Workshop on Advances in Regularization,
Optimization, Kernel Methods and Support Vector Machines: theory and applications, ROKS, 2013 (inproceedings)
ei
Bocsi, B., Csato, L., Peters, J.
Alignment-based Transfer Learning for Robot Models
In Proceedings of the 2013 International Joint Conference on Neural Networks (IJCNN 2013), pages: 1-7, 2013 (inproceedings)
ei
Grimm, D., Hagmann, J., Koenig, D., Weigel, D., Borgwardt, KM.
Accurate indel prediction using paired-end short reads
BMC Genomics, 14(132), 2013 (article)
ei
Chen, Z., Zhang, K., Chan, L.
Nonlinear Causal Discovery for High Dimensional Data: A Kernelized Trace Method
In 13th International Conference on Data Mining, pages: 1003-1008, (Editors: H. Xiong, G. Karypis, B. M. Thuraisingham, D. J. Cook and X. Wu), IEEE Computer Society, ICDM, 2013 (inproceedings)
ei
Paraschos, A., Neumann, G., Peters, J.
A probabilistic approach to robot trajectory generation
In Proceedings of the 13th IEEE International Conference on Humanoid Robots (HUMANOIDS), pages: 477-483, IEEE, 13th IEEE-RAS International Conference on Humanoid Robots, 2013 (inproceedings)
ei
Sra, S., Hosseini, R.
Geometric optimisation on positive definite matrices for elliptically contoured distributions
In Advances in Neural Information Processing Systems 26, pages: 2562-2570, (Editors: C.J.C. Burges and L. Bottou and M. Welling and Z. Ghahramani and K.Q. Weinberger), 27th Annual Conference on Neural Information Processing Systems (NIPS), 2013 (inproceedings)
ei
Bottou, L., Peters, J., Quiñonero-Candela, J., Charles, D., Chickering, D., Portugualy, E., Ray, D., Simard, P., Snelson, E.
Counterfactual Reasoning and Learning Systems: The Example of Computational Advertising
Journal of Machine Learning Research, 14, pages: 3207-3260, 2013 (article)
ei
pn
Hennig, P.
Fast Probabilistic Optimization from Noisy Gradients
In Proceedings of The 30th International Conference on Machine Learning, JMLR W&CP 28(1), pages: 62–70, (Editors: S Dasgupta and D McAllester), ICML, 2013 (inproceedings)
ei
Gomez Rodriguez, M., Leskovec, J., Schölkopf, B.
Structure and Dynamics of Information Pathways in On-line Media
In 6th ACM International Conference on Web Search and Data Mining (WSDM), pages: 23-32, (Editors: S Leonardi, A Panconesi, P Ferragina, and A Gionis), ACM, WSDM, 2013 (inproceedings)
ei
Seldin, Y., Szepesvári, C., Auer, P., Abbasi-Yadkori, Y.
Evaluation and Analysis of the Performance of the EXP3 Algorithm in Stochastic Environments
In Proceedings of the Tenth European Workshop on Reinforcement Learning , pages: 103-116, (Editors: MP Deisenroth and C Szepesvári and J Peters), JMLR, EWRL, 2013 (inproceedings)
ei
Zhang, K., Schölkopf, B., Muandet, K., Wang, Z.
Domain adaptation under Target and Conditional Shift
In Proceedings of the 30th International Conference on Machine Learning, W&CP 28 (3), pages: 819–827, (Editors: S Dasgupta and D McAllester), JMLR, ICML, 2013 (inproceedings)
ei
Mooij, J., Janzing, D., Schölkopf, B.
From Ordinary Differential Equations to Structural Causal Models: the deterministic case
In Proceedings of the Twenty-Ninth Conference Annual Conference on Uncertainty in Artificial Intelligence, pages: 440-448, (Editors: A Nicholson and P Smyth), AUAI Press, Corvallis, Oregon, UAI, 2013 (inproceedings)
ei
Schuler, C., Burger, H., Harmeling, S., Schölkopf, B.
A machine learning approach for non-blind image deconvolution
In IEEE Conference on Computer Vision and Pattern Recognition, pages: 1067-1074, IEEE, CVPR, 2013 (inproceedings)
ei
Maertens, M., Wichmann, F.
When luminance increment thresholds depend on apparent lightness
Journal of Vision, 13(6):1-11, 2013 (article)
ei
Daniel, C., Neumann, G., Peters, J.
Autonomous Reinforcement Learning with Hierarchical REPS
In Proceedings of the 2013 International Joint Conference on Neural Networks (IJCNN 2013), pages: 1-8, 2013 (inproceedings)
ei
Azencott, C., Grimm, D., Sugiyama, M., Kawahara, Y., Borgwardt, K.
Efficient network-guided multi-locus association mapping with graph cuts
Bioinformatics, 29(13):i171-i179, 2013 (article)
ei
Feragen, A., Petersen, J., Grimm, D., Dirksen, A., Pedersen, JH., Borgwardt, KM., de Bruijne, M.
Geometric Tree Kernels: Classification of COPD from Airway Tree Geometry
In Information Processing in Medical Imaging, pages: 171-183, (Editors: JC Gee and S Joshi and KM Pohl and WM Wells and L Zöllei), Springer, Berlin Heidelberg, 23rd International Conference on Information Processing in Medical Imaging (IPMI), 2013, Lecture Notes in Computer Science, Vol. 7017 (inproceedings)
ei
Zhang, K., Wang, Z., Schölkopf, B.
On estimation of functional causal models: Post-nonlinear causal model as an example
In First IEEE ICDM workshop on causal discovery , 2013, Held in conjunction with the 12th IEEE International Conference on Data Mining (ICDM 2013) (inproceedings)
ei
van Hoof, H., Krömer, O., Peters, J.
Object Modeling and Segmentation by Robot Interaction with Cluttered Environments
In Proceedings of the IEEE International Conference on Humanoid Robots (HUMANOIDS), pages: 169-176, IEEE, 13th IEEE-RAS International Conference on Humanoid Robots, 2013 (inproceedings)
ei
Jegelka, S., Bach, F., Sra, S.
Reflection methods for user-friendly submodular optimization
In Advances in Neural Information Processing Systems 26, pages: 1313-1321, (Editors: C.J.C. Burges and L. Bottou and M. Welling and Z. Ghahramani and K.Q. Weinberger), 27th Annual Conference on Neural Information Processing Systems (NIPS), 2013 (inproceedings)
ei
Schölkopf, B., Janzing, D., Peters, J., Sgouritsa, E., Zhang, K., Mooij, J.
Semi-supervised learning in causal and anticausal settings
In Empirical Inference, pages: 129-141, 13, Festschrift in Honor of Vladimir Vapnik, (Editors: Schölkopf, B., Luo, Z. and Vovk, V.), Springer, 2013 (inbook)
ei
Janzing, D., Balduzzi, D., Grosse-Wentrup, M., Schölkopf, B.
Quantifying causal influences
Annals of Statistics, 41(5):2324-2358, 2013 (article)
ei
Wang, Z., Mülling, K., Deisenroth, M., Ben Amor, H., Vogt, D., Schölkopf, B., Peters, J.
Probabilistic movement modeling for intention inference in human-robot interaction
International Journal of Robotics Research, 32(7):841-858, 2013 (article)
ei
Loktyushin, A., Nickisch, H., Pohmann, R., Schölkopf, B.
Blind Retrospective Motion Correction of MR Images
Magnetic Resonance in Medicine (MRM), 70(6):1608–1618, 2013 (article)
ei
Barthelmé, S., Trukenbrod, H., Engbert, R., Wichmann, F.
Modeling fixation locations using spatial point processes
Journal of Vision, 13(12):1-34, 2013 (article)
ei
Sra, S.
Tractable large-scale optimization in machine learning
In Tractability: Practical Approaches to Hard Problems, pages: 202-230, 7, (Editors: Bordeaux, L., Hamadi , Y., Kohli, P. and Mateescu, R. ), Cambridge University Press , 2013 (inbook)
ei
Mechelke, M., Habeck, M.
A probabilistic model for secondary structure prediction from protein chemical shifts
Proteins: Structure, Function, and Bioinformatics, 81(6):984–993, 2013 (article)
ei
Reichstein, M., Bahn, M., Ciais, P., Frank, D., Mahecha, M., Seneviratne, S., Zscheischler, J., Beer, C., Buchmann, N., Frank, D., Papale, D., Rammig, A., Smith, P., Thonicke, K., van der Velde, M., Vicca, S., Walz, A., Wattenbach, M.
Climate Extremes and the Carbon Cycle
Nature, 500, pages: 287-295, 2013 (article)
ei
Kupcsik, A., Deisenroth, M., Peters, J., Neumann, G.
Data-Efficient Generalization of Robot Skills with Contextual Policy Search
In Proceedings of the 27th National Conference on Artificial Intelligence (AAAI 2013), (Editors: desJardins, M. and Littman, M. L.), AAAI Press, 2013 (inproceedings)
ei
Muandet, K., Schölkopf, B.
One-class Support Measure Machines for Group Anomaly Detection
In Proceedings 29th Conference on Uncertainty in Artificial Intelligence (UAI), pages: 449-458, (Editors: Ann Nicholson and Padhraic Smyth), AUAI Press, Corvallis, Oregon, UAI, 2013 (inproceedings)
ei
Gomez Rodriguez, M., Leskovec, J., Schölkopf, B.
Modeling Information Propagation with Survival Theory
In Proceedings of the 30th International Conference on Machine Learning, JMLR W&CP 28 (3), pages: 666-674, (Editors: S Dasgupta and D McAllester), JMLR, ICML, 2013 (inproceedings)
ei
Grosse-Wentrup, M., Harmeling, S., Zander, T., Hill, J., Schölkopf, B.
How to Test the Quality of Reconstructed Sources in Independent Component Analysis (ICA) of EEG/MEG Data
In Proceedings of the 3rd International Workshop on Pattern Recognition in NeuroImaging (PRNI), pages: 102-105, IEEE Xplore Digital Library, PRNI, 2013 (inproceedings)
ei
Sgouritsa, E., Janzing, D., Peters, J., Schölkopf, B.
Identifying Finite Mixtures of Nonparametric Product Distributions and Causal Inference of Confounders
In Proceedings of the 29th Conference on Uncertainty in Artificial Intelligence (UAI), pages: 556-565, (Editors: A Nicholson and P Smyth), AUAI Press Corvallis, Oregon, USA, UAI, 2013 (inproceedings)