Header logo is


2019


no image
Neural Signatures of Motor Skill in the Resting Brain

Ozdenizci, O., Meyer, T., Wichmann, F., Peters, J., Schölkopf, B., Cetin, M., Grosse-Wentrup, M.

Proceedings of the IEEE International Conference on Systems, Man and Cybernetics (SMC 2019), October 2019 (conference) Accepted

ei

[BibTex]

2019


[BibTex]


no image
Beta Power May Mediate the Effect of Gamma-TACS on Motor Performance

Mastakouri, A., Schölkopf, B., Grosse-Wentrup, M.

Engineering in Medicine and Biology Conference (EMBC), July 2019 (conference) Accepted

ei

arXiv PDF [BibTex]

arXiv PDF [BibTex]


no image
Kernel Mean Matching for Content Addressability of GANs

Jitkrittum*, W., Sangkloy*, P., Gondal, M. W., Raj, A., Hays, J., Schölkopf, B.

Proceedings of the 36th International Conference on Machine Learning (ICML), 97, pages: 3140-3151, Proceedings of Machine Learning Research, (Editors: Chaudhuri, Kamalika and Salakhutdinov, Ruslan), PMLR, June 2019, *equal contribution (conference)

ei

PDF link (url) [BibTex]

PDF link (url) [BibTex]


no image
Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations

Locatello, F., Bauer, S., Lucic, M., Raetsch, G., Gelly, S., Schölkopf, B., Bachem, O.

Proceedings of the 36th International Conference on Machine Learning (ICML), 97, pages: 4114-4124, Proceedings of Machine Learning Research, (Editors: Chaudhuri, Kamalika and Salakhutdinov, Ruslan), PMLR, June 2019 (conference)

ei

PDF link (url) [BibTex]

PDF link (url) [BibTex]


Thumb xl cvpr2019 demo v2.001
Local Temporal Bilinear Pooling for Fine-grained Action Parsing

Zhang, Y., Tang, S., Muandet, K., Jarvers, C., Neumann, H.

In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 2019, June 2019 (inproceedings)

Abstract
Fine-grained temporal action parsing is important in many applications, such as daily activity understanding, human motion analysis, surgical robotics and others requiring subtle and precise operations in a long-term period. In this paper we propose a novel bilinear pooling operation, which is used in intermediate layers of a temporal convolutional encoder-decoder net. In contrast to other work, our proposed bilinear pooling is learnable and hence can capture more complex local statistics than the conventional counterpart. In addition, we introduce exact lower-dimension representations of our bilinear forms, so that the dimensionality is reduced with neither information loss nor extra computation. We perform intensive experiments to quantitatively analyze our model and show the superior performances to other state-of-the-art work on various datasets.

ei ps

Code video demo pdf link (url) [BibTex]

Code video demo pdf link (url) [BibTex]


no image
Generate Semantically Similar Images with Kernel Mean Matching

Jitkrittum*, W., Sangkloy*, P., Gondal, M. W., Raj, A., Hays, J., Schölkopf, B.

6th Workshop Women in Computer Vision (WiCV) (oral presentation), June 2019, *equal contribution (conference) Accepted

ei

[BibTex]

[BibTex]


no image
Robustly Disentangled Causal Mechanisms: Validating Deep Representations for Interventional Robustness

Suter, R., Miladinovic, D., Schölkopf, B., Bauer, S.

Proceedings of the 36th International Conference on Machine Learning (ICML), 97, pages: 6056-6065, Proceedings of Machine Learning Research, (Editors: Chaudhuri, Kamalika and Salakhutdinov, Ruslan), PMLR, June 2019 (conference)

ei

PDF link (url) [BibTex]

PDF link (url) [BibTex]


no image
First-Order Adversarial Vulnerability of Neural Networks and Input Dimension

Simon-Gabriel, C., Ollivier, Y., Bottou, L., Schölkopf, B., Lopez-Paz, D.

Proceedings of the 36th International Conference on Machine Learning (ICML), 97, pages: 5809-5817, Proceedings of Machine Learning Research, (Editors: Chaudhuri, Kamalika and Salakhutdinov, Ruslan), PMLR, June 2019 (conference)

ei

PDF link (url) [BibTex]

PDF link (url) [BibTex]


no image
Overcoming Mean-Field Approximations in Recurrent Gaussian Process Models

Ialongo, A. D., Van Der Wilk, M., Hensman, J., Rasmussen, C. E.

In Proceedings of the 36th International Conference on Machine Learning (ICML), 97, pages: 2931-2940, Proceedings of Machine Learning Research, (Editors: Chaudhuri, Kamalika and Salakhutdinov, Ruslan), PMLR, June 2019 (inproceedings)

ei

PDF link (url) [BibTex]

PDF link (url) [BibTex]


no image
Meta learning variational inference for prediction

Gordon, J., Bronskill, J., Bauer, M., Nowozin, S., Turner, R.

7th International Conference on Learning Representations (ICLR), May 2019 (conference) Accepted

ei

arXiv link (url) [BibTex]

arXiv link (url) [BibTex]


Thumb xl learning tactile servoing thumbnail
Learning Latent Space Dynamics for Tactile Servoing

Sutanto, G., Ratliff, N., Sundaralingam, B., Chebotar, Y., Su, Z., Handa, A., Fox, D.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) 2019, IEEE, International Conference on Robotics and Automation, May 2019 (inproceedings) Accepted

am

pdf video [BibTex]

pdf video [BibTex]


no image
Deep Lagrangian Networks: Using Physics as Model Prior for Deep Learning

Lutter, M., Ritter, C., Peters, J.

7th International Conference on Learning Representations (ICLR), May 2019 (conference) Accepted

ei

link (url) [BibTex]

link (url) [BibTex]


no image
DeepOBS: A Deep Learning Optimizer Benchmark Suite

Schneider, F., Balles, L., Hennig, P.

7th International Conference on Learning Representations (ICLR), May 2019 (conference) Accepted

ei pn

link (url) [BibTex]

link (url) [BibTex]


no image
Disentangled State Space Models: Unsupervised Learning of Dynamics across Heterogeneous Environments

Miladinović*, D., Gondal*, M. W., Schölkopf, B., Buhmann, J. M., Bauer, S.

Deep Generative Models for Highly Structured Data Workshop at ICLR, May 2019, *equal contribution (conference) Accepted

ei

link (url) [BibTex]

link (url) [BibTex]


no image
SOM-VAE: Interpretable Discrete Representation Learning on Time Series

Fortuin, V., Hüser, M., Locatello, F., Strathmann, H., Rätsch, G.

7th International Conference on Learning Representations (ICLR), May 2019 (conference) Accepted

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Resampled Priors for Variational Autoencoders

Bauer, M., Mnih, A.

22nd International Conference on Artificial Intelligence and Statistics, April 2019 (conference) Accepted

ei

arXiv [BibTex]

arXiv [BibTex]


no image
Semi-Generative Modelling: Covariate-Shift Adaptation with Cause and Effect Features

von Kügelgen, J., Mey, A., Loog, M.

22nd International Conference on Artificial Intelligence and Statistics (AISTATS), April 2019 (conference) Accepted

ei

[BibTex]

[BibTex]


no image
Sobolev Descent

Mroueh, Y., Sercu, T., Raj, A.

22nd International Conference on Artificial Intelligence and Statistics (AISTATS), April 2019 (conference) Accepted

ei

[BibTex]

[BibTex]


no image
Fast and Robust Shortest Paths on Manifolds Learned from Data

Arvanitidis, G., Hauberg, S., Hennig, P., Schober, M.

22nd International Conference on Artificial Intelligence and Statistics (AISTATS), April 2019 (conference) Accepted

ei pn

[BibTex]

[BibTex]


no image
Data scarcity, robustness and extreme multi-label classification

Babbar, R., Schölkopf, B.

Machine Learning, Special Issue of the ECML PKDD 2019 Journal Track, March 2019 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Enhancing Human Learning via Spaced Repetition Optimization

Tabibian, B., Upadhyay, U., De, A., Zarezade, A., Schölkopf, B., Gomez Rodriguez, M.

Proceedings of the National Academy of Sciences, 2019, PNAS published ahead of print January 22, 2019 (article)

ei

DOI Project Page Project Page [BibTex]

DOI Project Page Project Page [BibTex]


Thumb xl screenshot 2019 03 25 at 14.29.22
Learning to Control Highly Accelerated Ballistic Movements on Muscular Robots

Büchler, D., Calandra, R., Peters, J.

2019 (article) Submitted

Abstract
High-speed and high-acceleration movements are inherently hard to control. Applying learning to the control of such motions on anthropomorphic robot arms can improve the accuracy of the control but might damage the system. The inherent exploration of learning approaches can lead to instabilities and the robot reaching joint limits at high speeds. Having hardware that enables safe exploration of high-speed and high-acceleration movements is therefore desirable. To address this issue, we propose to use robots actuated by Pneumatic Artificial Muscles (PAMs). In this paper, we present a four degrees of freedom (DoFs) robot arm that reaches high joint angle accelerations of up to 28000 °/s^2 while avoiding dangerous joint limits thanks to the antagonistic actuation and limits on the air pressure ranges. With this robot arm, we are able to tune control parameters using Bayesian optimization directly on the hardware without additional safety considerations. The achieved tracking performance on a fast trajectory exceeds previous results on comparable PAM-driven robots. We also show that our system can be controlled well on slow trajectories with PID controllers due to careful construction considerations such as minimal bending of cables, lightweight kinematics and minimal contact between PAMs and PAMs with the links. Finally, we propose a novel technique to control the the co-contraction of antagonistic muscle pairs. Experimental results illustrate that choosing the optimal co-contraction level is vital to reach better tracking performance. Through the use of PAM-driven robots and learning, we do a small step towards the future development of robots capable of more human-like motions.

ei

Arxiv Video [BibTex]


no image
AReS and MaRS Adversarial and MMD-Minimizing Regression for SDEs

Abbati*, G., Wenk*, P., Osborne, M. A., Krause, A., Schölkopf, B., Bauer, S.

Proceedings of the 36th International Conference on Machine Learning (ICML), 97, pages: 1-10, Proceedings of Machine Learning Research, (Editors: Chaudhuri, Kamalika and Salakhutdinov, Ruslan), PMLR, 2019, *equal contribution (conference)

ei

PDF link (url) [BibTex]

PDF link (url) [BibTex]


no image
Inferring causation from time series with perspectives in Earth system sciences

Runge, J., Bathiany, S., Bollt, E., Camps-Valls, G., Coumou, D., Deyle, E., Glymour, C., Kretschmer, M., Mahecha, M., van Nes, E., Peters, J., Quax, R., Reichstein, M., Scheffer, M. S. B., Spirtes, P., Sugihara, G., Sun, J., Zhang, K., Zscheischler, J.

Nature Communications, 2019 (article) In revision

ei

[BibTex]

[BibTex]


no image
Kernel Stein Tests for Multiple Model Comparison

Lim, J. N., Yamada, M., Schölkopf, B., Jitkrittum, W.

2019 (conference) Submitted

ei

[BibTex]

[BibTex]


no image
MYND: A Platform for Large-scale Neuroscientific Studies

Hohmann, M. R., Hackl, M., Wirth, B., Zaman, T., Enficiaud, R., Grosse-Wentrup, M., Schölkopf, B.

Proceedings of the 2019 Conference on Human Factors in Computing Systems (CHI), 2019 (conference) Accepted

ei

[BibTex]

[BibTex]


Thumb xl screenshot from 2019 03 21 12 11 19
Automated Generation of Reactive Programs from Human Demonstration for Orchestration of Robot Behaviors

Berenz, V., Bjelic, A., Mainprice, J.

ArXiv, 2019 (article)

Abstract
Social robots or collaborative robots that have to interact with people in a reactive way are difficult to program. This difficulty stems from the different skills required by the programmer: to provide an engaging user experience the behavior must include a sense of aesthetics while robustly operating in a continuously changing environment. The Playful framework allows composing such dynamic behaviors using a basic set of action and perception primitives. Within this framework, a behavior is encoded as a list of declarative statements corresponding to high-level sensory-motor couplings. To facilitate non-expert users to program such behaviors, we propose a Learning from Demonstration (LfD) technique that maps motion capture of humans directly to a Playful script. The approach proceeds by identifying the sensory-motor couplings that are active at each step using the Viterbi path in a Hidden Markov Model (HMM). Given these activation patterns, binary classifiers called evaluations are trained to associate activations to sensory data. Modularity is increased by clustering the sensory-motor couplings, leading to a hierarchical tree structure. The novelty of the proposed approach is that the learned behavior is encoded not in terms of trajectories in a task space, but as couplings between sensory information and high-level motor actions. This provides advantages in terms of behavioral generalization and reactivity displayed by the robot.

am

Support Video link (url) [BibTex]


no image
A Kernel Stein Test for Comparing Latent Variable Models

Kanagawa, H., Jitkrittum, W., Mackey, L., Fukumizu, K., Gretton, A.

2019 (conference) Submitted

ei

arXiv [BibTex]

arXiv [BibTex]


no image
Fisher Efficient Inference of Intractable Models

Liu, S., Kanamori, T., Jitkrittum, W., Chen, Y.

2019 (conference) Submitted

ei

arXiv [BibTex]

arXiv [BibTex]


no image
Fast Gaussian Process Based Gradient Matching for Parameter Identification in Systems of Nonlinear ODEs

Wenk, P., Gotovos, A., Bauer, S., Gorbach, N., Krause, A., Buhmann, J. M.

22nd International Conference on Artificial Intelligence and Statistics (AISTATS), 2019 (conference) Accepted

ei

PDF [BibTex]

PDF [BibTex]


Thumb xl rae
From Variational to Deterministic Autoencoders

Ghosh*, P., Sajjadi*, M. S. M., Vergari, A., Black, M. J., Schölkopf, B.

2019, *equal contribution (conference) Submitted

Abstract
Variational Autoencoders (VAEs) provide a theoretically-backed framework for deep generative models. However, they often produce “blurry” images, which is linked to their training objective. Sampling in the most popular implementation, the Gaussian VAE, can be interpreted as simply injecting noise to the input of a deterministic decoder. In practice, this simply enforces a smooth latent space structure. We challenge the adoption of the full VAE framework on this specific point in favor of a simpler, deterministic one. Specifically, we investigate how substituting stochasticity with other explicit and implicit regularization schemes can lead to a meaningful latent space without having to force it to conform to an arbitrarily chosen prior. To retrieve a generative mechanism for sampling new data points, we propose to employ an efficient ex-post density estimation step that can be readily adopted both for the proposed deterministic autoencoders as well as to improve sample quality of existing VAEs. We show in a rigorous empirical study that regularized deterministic autoencoding achieves state-of-the-art sample quality on the common MNIST, CIFAR-10 and CelebA datasets.

ei ps

arXiv [BibTex]

2005


no image
Kernel Methods for Measuring Independence

Gretton, A., Herbrich, R., Smola, A., Bousquet, O., Schölkopf, B.

Journal of Machine Learning Research, 6, pages: 2075-2129, December 2005 (article)

Abstract
We introduce two new functionals, the constrained covariance and the kernel mutual information, to measure the degree of independence of random variables. These quantities are both based on the covariance between functions of the random variables in reproducing kernel Hilbert spaces (RKHSs). We prove that when the RKHSs are universal, both functionals are zero if and only if the random variables are pairwise independent. We also show that the kernel mutual information is an upper bound near independence on the Parzen window estimate of the mutual information. Analogous results apply for two correlation-based dependence functionals introduced earlier: we show the kernel canonical correlation and the kernel generalised variance to be independence measures for universal kernels, and prove the latter to be an upper bound on the mutual information near independence. The performance of the kernel dependence functionals in measuring independence is verified in the context of independent component analysis.

ei

PDF PostScript PDF [BibTex]

2005


PDF PostScript PDF [BibTex]


no image
Kernel ICA for Large Scale Problems

Jegelka, S., Gretton, A., Achlioptas, D.

In pages: -, NIPS Workshop on Large Scale Kernel Machines, December 2005 (inproceedings)

ei

Web [BibTex]

Web [BibTex]


no image
A Unifying View of Sparse Approximate Gaussian Process Regression

Quinonero Candela, J., Rasmussen, C.

Journal of Machine Learning Research, 6, pages: 1935-1959, December 2005 (article)

Abstract
We provide a new unifying view, including all existing proper probabilistic sparse approximations for Gaussian process regression. Our approach relies on expressing the effective prior which the methods are using. This allows new insights to be gained, and highlights the relationship between existing methods. It also allows for a clear theoretically justified ranking of the closeness of the known approximations to the corresponding full GPs. Finally we point directly to designs of new better sparse approximations, combining the best of the existing strategies, within attractive computational constraints.

ei

PDF [BibTex]

PDF [BibTex]


no image
Training Support Vector Machines with Multiple Equality Constraints

Kienzle, W., Schölkopf, B.

In Proceedings of the 16th European Conference on Machine Learning, Lecture Notes in Computer Science, Vol. 3720, pages: 182-193, (Editors: JG Carbonell and J Siekmann), Springer, Berlin, Germany, ECML, November 2005 (inproceedings)

Abstract
In this paper we present a primal-dual decomposition algorithm for support vector machine training. As with existing methods that use very small working sets (such as Sequential Minimal Optimization (SMO), Successive Over-Relaxation (SOR) or the Kernel Adatron (KA)), our method scales well, is straightforward to implement, and does not require an external QP solver. Unlike SMO, SOR and KA, the method is applicable to a large number of SVM formulations regardless of the number of equality constraints involved. The effectiveness of our algorithm is demonstrated on a more difficult SVM variant in this respect, namely semi-parametric support vector regression.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Measuring Statistical Dependence with Hilbert-Schmidt Norms

Gretton, A., Bousquet, O., Smola, A., Schoelkopf, B.

In Algorithmic Learning Theory, Lecture Notes in Computer Science, Vol. 3734, pages: 63-78, (Editors: S Jain and H-U Simon and E Tomita), Springer, Berlin, Germany, 16th International Conference ALT, October 2005 (inproceedings)

Abstract
We propose an independence criterion based on the eigenspectrum of covariance operators in reproducing kernel Hilbert spaces (RKHSs), consisting of an empirical estimate of the Hilbert-Schmidt norm of the cross-covariance operator (we term this a Hilbert-Schmidt Independence Criterion, or HSIC). This approach has several advantages, compared with previous kernel-based independence criteria. First, the empirical estimate is simpler than any other kernel dependence test, and requires no user-defined regularisation. Second, there is a clearly defined population quantity which the empirical estimate approaches in the large sample limit, with exponential convergence guaranteed between the two: this ensures that independence tests based on {methodname} do not suffer from slow learning rates. Finally, we show in the context of independent component analysis (ICA) that the performance of HSIC is competitive with that of previously published kernel-based criteria, and of other recently published ICA methods.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Maximal Margin Classification for Metric Spaces

Hein, M., Bousquet, O., Schölkopf, B.

Journal of Computer and System Sciences, 71(3):333-359, October 2005 (article)

Abstract
In order to apply the maximum margin method in arbitrary metric spaces, we suggest to embed the metric space into a Banach or Hilbert space and to perform linear classification in this space. We propose several embeddings and recall that an isometric embedding in a Banach space is always possible while an isometric embedding in a Hilbert space is only possible for certain metric spaces. As a result, we obtain a general maximum margin classification algorithm for arbitrary metric spaces (whose solution is approximated by an algorithm of Graepel. Interestingly enough, the embedding approach, when applied to a metric which can be embedded into a Hilbert space, yields the SVM algorithm, which emphasizes the fact that its solution depends on the metric and not on the kernel. Furthermore we give upper bounds of the capacity of the function classes corresponding to both embeddings in terms of Rademacher averages. Finally we compare the capacities of these function classes directly.

ei

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


no image
An Analysis of the Anti-Learning Phenomenon for the Class Symmetric Polyhedron

Kowalczyk, A., Chapelle, O.

In Algorithmic Learning Theory: 16th International Conference, pages: 78-92, Algorithmic Learning Theory, October 2005 (inproceedings)

Abstract
This paper deals with an unusual phenomenon where most machine learning algorithms yield good performance on the training set but systematically worse than random performance on the test set. This has been observed so far for some natural data sets and demonstrated for some synthetic data sets when the classification rule is learned from a small set of training samples drawn from some high dimensional space. The initial analysis presented in this paper shows that anti-learning is a property of data sets and is quite distinct from overfitting of a training data. Moreover, the analysis leads to a specification of some machine learning procedures which can overcome anti-learning and generate ma- chines able to classify training and test data consistently.

ei

PDF [BibTex]

PDF [BibTex]


no image
Selective integration of multiple biological data for supervised network inference

Kato, T., Tsuda, K., Asai, K.

Bioinformatics, 21(10):2488 , October 2005 (article)

ei

PDF [BibTex]

PDF [BibTex]


no image
Assessing Approximate Inference for Binary Gaussian Process Classification

Kuss, M., Rasmussen, C.

Journal of Machine Learning Research, 6, pages: 1679 , October 2005 (article)

Abstract
Gaussian process priors can be used to define flexible, probabilistic classification models. Unfortunately exact Bayesian inference is analytically intractable and various approximation techniques have been proposed. In this work we review and compare Laplace‘s method and Expectation Propagation for approximate Bayesian inference in the binary Gaussian process classification model. We present a comprehensive comparison of the approximations, their predictive performance and marginal likelihood estimates to results obtained by MCMC sampling. We explain theoretically and corroborate empirically the advantages of Expectation Propagation compared to Laplace‘s method.

ei

PDF PDF [BibTex]

PDF PDF [BibTex]


no image
Clustering on the Unit Hypersphere using von Mises-Fisher Distributions

Banerjee, A., Dhillon, I., Ghosh, J., Sra, S.

Journal of Machine Learning Research, 6, pages: 1345-1382, September 2005 (article)

Abstract
Several large scale data mining applications, such as text categorization and gene expression analysis, involve high-dimensional data that is also inherently directional in nature. Often such data is L2 normalized so that it lies on the surface of a unit hypersphere. Popular models such as (mixtures of) multi-variate Gaussians are inadequate for characterizing such data. This paper proposes a generative mixture-model approach to clustering directional data based on the von Mises-Fisher (vMF) distribution, which arises naturally for data distributed on the unit hypersphere. In particular, we derive and analyze two variants of the Expectation Maximization (EM) framework for estimating the mean and concentration parameters of this mixture. Numerical estimation of the concentration parameters is non-trivial in high dimensions since it involves functional inversion of ratios of Bessel functions. We also formulate two clustering algorithms corresponding to the variants of EM that we derive. Our approach provides a theoretical basis for the use of cosine similarity that has been widely employed by the information retrieval community, and obtains the spherical kmeans algorithm (kmeans with cosine similarity) as a special case of both variants. Empirical results on clustering of high-dimensional text and gene-expression data based on a mixture of vMF distributions show that the ability to estimate the concentration parameter for each vMF component, which is not present in existing approaches, yields superior results, especially for difficult clustering tasks in high-dimensional spaces.

ei

PDF [BibTex]

PDF [BibTex]


no image
Support Vector Machines for 3D Shape Processing

Steinke, F., Schölkopf, B., Blanz, V.

Computer Graphics Forum, 24(3, EUROGRAPHICS 2005):285-294, September 2005 (article)

Abstract
We propose statistical learning methods for approximating implicit surfaces and computing dense 3D deformation fields. Our approach is based on Support Vector (SV) Machines, which are state of the art in machine learning. It is straightforward to implement and computationally competitive; its parameters can be automatically set using standard machine learning methods. The surface approximation is based on a modified Support Vector regression. We present applications to 3D head reconstruction, including automatic removal of outliers and hole filling. In a second step, we build on our SV representation to compute dense 3D deformation fields between two objects. The fields are computed using a generalized SVMachine enforcing correspondence between the previously learned implicit SV object representations, as well as correspondences between feature points if such points are available. We apply the method to the morphing of 3D heads and other objects.

ei

PDF [BibTex]

PDF [BibTex]


no image
Fast Protein Classification with Multiple Networks

Tsuda, K., Shin, H., Schölkopf, B.

Bioinformatics, 21(Suppl. 2):59-65, September 2005 (article)

Abstract
Support vector machines (SVM) have been successfully used to classify proteins into functional categories. Recently, to integrate multiple data sources, a semidefinite programming (SDP) based SVM method was introduced Lanckriet et al (2004). In SDP/SVM, multiple kernel matrices corresponding to each of data sources are combined with weights obtained by solving an SDP. However, when trying to apply SDP/SVM to large problems, the computational cost can become prohibitive, since both converting the data to a kernel matrix for the SVM and solving the SDP are time and memory demanding. Another application-specific drawback arises when some of the data sources are protein networks. A common method of converting the network to a kernel matrix is the diffusion kernel method, which has time complexity of O(n^3), and produces a dense matrix of size n x n. We propose an efficient method of protein classification using multiple protein networks. Available protein networks, such as a physical interaction network or a metabolic network, can be directly incorporated. Vectorial data can also be incorporated after conversion into a network by means of neighbor point connection. Similarly to the SDP/SVM method, the combination weights are obtained by convex optimization. Due to the sparsity of network edges, the computation time is nearly linear in the number of edges of the combined network. Additionally, the combination weights provide information useful for discarding noisy or irrelevant networks. Experiments on function prediction of 3588 yeast proteins show promising results: the computation time is enormously reduced, while the accuracy is still comparable to the SDP/SVM method.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Iterative Kernel Principal Component Analysis for Image Modeling

Kim, K., Franz, M., Schölkopf, B.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(9):1351-1366, September 2005 (article)

Abstract
In recent years, Kernel Principal Component Analysis (KPCA) has been suggested for various image processing tasks requiring an image model such as, e.g., denoising or compression. The original form of KPCA, however, can be only applied to strongly restricted image classes due to the limited number of training examples that can be processed. We therefore propose a new iterative method for performing KPCA, the Kernel Hebbian Algorithm which iteratively estimates the Kernel Principal Components with only linear order memory complexity. In our experiments, we compute models for complex image classes such as faces and natural images which require a large number of training examples. The resulting image models are tested in single-frame super-resolution and denoising applications. The KPCA model is not specifically tailored to these tasks; in fact, the same model can be used in super-resolution with variable input resolution, or denoising with unknown noise characteristics. In spite of this, both super-resolution a nd denoising performance are comparable to existing methods.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Phenotypic characterization of chondrosarcoma-derived cell lines

Schorle, C., Finger, F., Zien, A., Block, J., Gebhard, P., Aigner, T.

Cancer Letters, 226(2):143-154, August 2005 (article)

Abstract
Gene expression profiling of three chondrosarcoma derived cell lines (AD, SM, 105KC) showed an increased proliferative activity and a reduced expression of chondrocytic-typical matrix products compared to primary chondrocytes. The incapability to maintain an adequate matrix synthesis as well as a notable proliferative activity at the same time is comparable to neoplastic chondrosarcoma cells in vivo which cease largely cartilage matrix formation as soon as their proliferative activity increases. Thus, the investigated cell lines are of limited value as substitute of primary chondrocytes but might have a much higher potential to investigate the behavior of neoplastic chondrocytes, i.e. chondrosarcoma biology.

ei

Web [BibTex]

Web [BibTex]


no image
Local Rademacher Complexities

Bartlett, P., Bousquet, O., Mendelson, S.

The Annals of Statistics, 33(4):1497-1537, August 2005 (article)

Abstract
We propose new bounds on the error of learning algorithms in terms of a data-dependent notion of complexity. The estimates we establish give optimal rates and are based on a local and empirical version of Rademacher averages, in the sense that the Rademacher averages are computed from the data, on a subset of functions with small empirical error. We present some applications to classification and prediction with convex function classes, and with kernel classes in particular.

ei

PDF PostScript Web [BibTex]

PDF PostScript Web [BibTex]


no image
Building Sparse Large Margin Classifiers

Wu, M., Schölkopf, B., BakIr, G.

In Proceedings of the 22nd International Conference on Machine Learning, pages: 996-1003, (Editors: L De Raedt and S Wrobel ), ACM, New York, NY, USA, ICML , August 2005 (inproceedings)

Abstract
This paper presents an approach to build Sparse Large Margin Classifiers (SLMC) by adding one more constraint to the standard Support Vector Machine (SVM) training problem. The added constraint explicitly controls the sparseness of the classifier and an approach is provided to solve the formulated problem. When considering the dual of this problem, it can be seen that building an SLMC is equivalent to constructing an SVM with a modified kernel function. Further analysis of this kernel function indicates that the proposed approach essentially finds a discriminating subspace that can be spanned by a small number of vectors, and in this subspace different classes of data are linearly well separated. Experimental results over several classification benchmarks show that in most cases the proposed approach outperforms the state-of-art sparse learning algorithms.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]