Header logo is


2018


no image
Instrumentation, Data, and Algorithms for Visually Understanding Haptic Surface Properties

Burka, A. L.

University of Pennsylvania, Philadelphia, USA, August 2018, Department of Electrical and Systems Engineering (phdthesis)

Abstract
Autonomous robots need to efficiently walk over varied surfaces and grasp diverse objects. We hypothesize that the association between how such surfaces look and how they physically feel during contact can be learned from a database of matched haptic and visual data recorded from various end-effectors' interactions with hundreds of real-world surfaces. Testing this hypothesis required the creation of a new multimodal sensing apparatus, the collection of a large multimodal dataset, and development of a machine-learning pipeline. This thesis begins by describing the design and construction of the Portable Robotic Optical/Tactile ObservatioN PACKage (PROTONPACK, or Proton for short), an untethered handheld sensing device that emulates the capabilities of the human senses of vision and touch. Its sensory modalities include RGBD vision, egomotion, contact force, and contact vibration. Three interchangeable end-effectors (a steel tooling ball, an OptoForce three-axis force sensor, and a SynTouch BioTac artificial fingertip) allow for different material properties at the contact point and provide additional tactile data. We then detail the calibration process for the motion and force sensing systems, as well as several proof-of-concept surface discrimination experiments that demonstrate the reliability of the device and the utility of the data it collects. This thesis then presents a large-scale dataset of multimodal surface interaction recordings, including 357 unique surfaces such as furniture, fabrics, outdoor fixtures, and items from several private and public material sample collections. Each surface was touched with one, two, or three end-effectors, comprising approximately one minute per end-effector of tapping and dragging at various forces and speeds. We hope that the larger community of robotics researchers will find broad applications for the published dataset. Lastly, we demonstrate an algorithm that learns to estimate haptic surface properties given visual input. Surfaces were rated on hardness, roughness, stickiness, and temperature by the human experimenter and by a pool of purely visual observers. Then we trained an algorithm to perform the same task as well as infer quantitative properties calculated from the haptic data. Overall, the task of predicting haptic properties from vision alone proved difficult for both humans and computers, but a hybrid algorithm using a deep neural network and a support vector machine achieved a correlation between expected and actual regression output between approximately ρ = 0.3 and ρ = 0.5 on previously unseen surfaces.

hi

Project Page [BibTex]

2018


Project Page [BibTex]


Robust Visual Augmented Reality in Robot-Assisted Surgery
Robust Visual Augmented Reality in Robot-Assisted Surgery

Forte, M.

Politecnico di Milano, Milan, Italy, July 2018, Department of Electronic, Information, and Biomedical Engineering (mastersthesis)

Abstract
The broader research objective of this line of research is to test the hypothesis that real-time stereo video analysis and augmented reality can increase safety and task efficiency in robot-assisted surgery. This master’s thesis aims to solve the first step needed to achieve this goal: the creation of a robust system that delivers the envisioned feedback to a surgeon while he or she controls a surgical robot that is identical to those used on human patients. Several approaches for applying augmented reality to da Vinci Surgical Systems have been proposed, but none of them entirely rely on a clinical robot; specifically, they require additional sensors, depend on access to the da Vinci API, are designed for a very specific task, or were tested on systems that are starkly different from those in clinical use. There has also been prior work that presents the real-world camera view and the computer graphics on separate screens, or not in real time. In other scenarios, the digital information is overlaid manually by the surgeons themselves or by computer scientists, rather than being generated automatically in response to the surgeon’s actions. We attempted to overcome the aforementioned constraints by acquiring input signals from the da Vinci stereo endoscope and providing augmented reality to the console in real time (less than 150 ms delay, including the 62 ms of inherent latency of the da Vinci). The potential benefits of the resulting system are broad because it was built to be general, rather than customized for any specific task. The entire platform is compatible with any generation of the da Vinci System and does not require a dVRK (da Vinci Research Kit) or access to the API. Thus, it can be applied to existing da Vinci Systems in operating rooms around the world.

hi

Project Page [BibTex]

Project Page [BibTex]


no image
A virtual reality environment for experiments in assistive robotics and neural interfaces

Bustamante, S.

Graduate School of Neural Information Processing, Eberhard Karls Universität Tübingen, Germany, 2018 (mastersthesis)

ei

PDF [BibTex]

PDF [BibTex]


no image
Optimal Trajectory Generation and Learning Control for Robot Table Tennis

Koc, O.

Technical University Darmstadt, Germany, 2018 (phdthesis)

ei

[BibTex]

[BibTex]


no image
Distribution-Dissimilarities in Machine Learning

Simon-Gabriel, C. J.

Eberhard Karls Universität Tübingen, Germany, 2018 (phdthesis)

ei

[BibTex]

[BibTex]


no image
Domain Adaptation Under Causal Assumptions

Lechner, T.

Eberhard Karls Universität Tübingen, Germany, 2018 (mastersthesis)

ei

[BibTex]

[BibTex]


no image
A Causal Perspective on Deep Representation Learning

Suter, R.

ETH Zurich, 2018 (mastersthesis)

ei

[BibTex]


no image
Probabilistic Approaches to Stochastic Optimization

Mahsereci, M.

Eberhard Karls Universität Tübingen, Germany, 2018 (phdthesis)

ei pn

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Reinforcement Learning for High-Speed Robotics with Muscular Actuation

Guist, S.

Ruprecht-Karls-Universität Heidelberg , 2018 (mastersthesis)

ei

[BibTex]

[BibTex]


no image
Probabilistic Ordinary Differential Equation Solvers — Theory and Applications

Schober, M.

Eberhard Karls Universität Tübingen, Germany, 2018 (phdthesis)

ei pn

[BibTex]

[BibTex]


no image
A machine learning approach to taking EEG-based computer interfaces out of the lab

Jayaram, V.

Graduate Training Centre of Neuroscience, IMPRS, Eberhard Karls Universität Tübingen, Germany, 2018 (phdthesis)

ei

[BibTex]

[BibTex]

2012


no image
Scalable graph kernels

Shervashidze, N.

Eberhard Karls Universität Tübingen, Germany, October 2012 (phdthesis)

ei

Web [BibTex]

2012


Web [BibTex]


no image
Learning Motor Skills: From Algorithms to Robot Experiments

Kober, J.

Technische Universität Darmstadt, Germany, March 2012 (phdthesis)

ei

PDF [BibTex]

PDF [BibTex]


no image
Structure and Dynamics of Diffusion Networks

Gomez Rodriguez, M.

Department of Electrical Engineering, Stanford University, 2012 (phdthesis)

ei

Web [BibTex]

Web [BibTex]


no image
Blind Deconvolution in Scientific Imaging & Computational Photography

Hirsch, M.

Eberhard Karls Universität Tübingen, Germany, 2012 (phdthesis)

ei

Web [BibTex]

Web [BibTex]

2011


no image
Crowdsourcing for optimisation of deconvolution methods via an iPhone application

Lang, A.

Hochschule Reutlingen, Germany, April 2011 (mastersthesis)

ei

[BibTex]

2011


[BibTex]


no image
Model Learning in Robot Control

Nguyen-Tuong, D.

Albert-Ludwigs-Universität Freiburg, Germany, 2011 (phdthesis)

ei

[BibTex]

[BibTex]

2005


no image
Extension to Kernel Dependency Estimation with Applications to Robotics

BakIr, G.

Biologische Kybernetik, Technische Universität Berlin, Berlin, November 2005 (phdthesis)

Abstract
Kernel Dependency Estimation(KDE) is a novel technique which was designed to learn mappings between sets without making assumptions on the type of the involved input and output data. It learns the mapping in two stages. In a first step, it tries to estimate coordinates of a feature space representation of elements of the set by solving a high dimensional multivariate regression problem in feature space. Following this, it tries to reconstruct the original representation given the estimated coordinates. This thesis introduces various algorithmic extensions to both stages in KDE. One of the contributions of this thesis is to propose a novel linear regression algorithm that explores low-dimensional subspaces during learning. Furthermore various existing strategies for reconstructing patterns from feature maps involved in KDE are discussed and novel pre-image techniques are introduced. In particular, pre-image techniques for data-types that are of discrete nature such as graphs and strings are investigated. KDE is then explored in the context of robot pose imitation where the input is a an image with a human operator and the output is the robot articulated variables. Thus, using KDE, robot pose imitation is formulated as a regression problem.

ei

PDF PDF [BibTex]

2005


PDF PDF [BibTex]


no image
Geometrical aspects of statistical learning theory

Hein, M.

Biologische Kybernetik, Darmstadt, Darmstadt, November 2005 (phdthesis)

ei

PDF [BibTex]

PDF [BibTex]


no image
Implicit Surfaces For Modelling Human Heads

Steinke, F.

Biologische Kybernetik, Eberhard-Karls-Universität, Tübingen, September 2005 (diplomathesis)

ei

[BibTex]

[BibTex]


no image
Machine Learning Methods for Brain-Computer Interdaces

Lal, TN.

Biologische Kybernetik, University of Darmstadt, September 2005 (phdthesis)

ei

Web [BibTex]

Web [BibTex]


no image
Efficient Adaptive Sampling of the Psychometric Function by Maximizing Information Gain

Tanner, TG.

Biologische Kybernetik, Eberhard-Karls University Tübingen, Tübingen, Germany, May 2005 (diplomathesis)

Abstract
A common task in psychophysics is to measure the psychometric function. A psychometric function can be described by its shape and four parameters: offset or threshold, slope or width, false alarm rate or chance level and miss or lapse rate. Depending on the parameters of interest some points on the psychometric function may be more informative than others. Adaptive methods attempt to place trials on the most informative points based on the data collected in previous trials. A new Bayesian adaptive psychometric method placing trials by minimising the expected entropy of the posterior probabilty dis- tribution over a set of possible stimuli is introduced. The method is more flexible, faster and at least as efficient as the established method (Kontsevich and Tyler, 1999). Comparably accurate (2dB) threshold and slope estimates can be obtained after about 30 and 500 trials, respectively. By using a dynamic termination criterion the efficiency can be further improved. The method can be applied to all experimental designs including yes/no designs and allows acquisition of any set of free parameters. By weighting the importance of parameters one can include nuisance parameters and adjust the relative expected errors. Use of nuisance parameters may lead to more accurate estimates than assuming a guessed fixed value. Block designs are supported and do not harm the performance if a sufficient number of trials are performed. The method was evaluated by computer simulations in which the role of parametric assumptions, its robustness, the quality of different point estimates, the effect of dynamic termination criteria and many other settings were investigated.

ei

[BibTex]

[BibTex]

2003


no image
Real-Time Face Detection

Kienzle, W.

Biologische Kybernetik, Eberhard-Karls-Universitaet Tuebingen, Tuebingen, Germany, October 2003 (diplomathesis)

ei

[BibTex]

2003


[BibTex]


no image
m-Alternative Forced Choice—Improving the Efficiency of the Method of Constant Stimuli

Jäkel, F.

Biologische Kybernetik, Graduate School for Neural and Behavioural Sciences, Tübingen, 2003 (diplomathesis)

ei

[BibTex]

[BibTex]

2001


no image
Variationsverfahren zur Untersuchung von Grundzustandseigenschaften des Ein-Band Hubbard-Modells

Eichhorn, J.

Biologische Kybernetik, Technische Universität Dresden, Dresden/Germany, May 2001 (diplomathesis)

Abstract
Using different modifications of a new variational approach, statical groundstate properties of the one-band Hubbard model such as energy and staggered magnetisation are calculated. By taking into account additional fluctuations, the method ist gradually improved so that a very good description of the energy in one and two dimensions can be achieved. After a detailed discussion of the application in one dimension, extensions for two dimensions are introduced. By use of a modified version of the variational ansatz in particular a description of the quantum phase transition for the magnetisation should be possible.

ei

PostScript [BibTex]

2001


PostScript [BibTex]