ei
Kapoor, V., Besserve, M., Logothetis, N. K., Panagiotaropoulos, T. I.
Parallel and functionally segregated processing of task phase and conscious content in the prefrontal cortex
Communications Biology, 1(215):1-12, December 2018 (article)
ei
Büchler, D., Calandra, R., Schölkopf, B., Peters, J.
Control of Musculoskeletal Systems using Learned Dynamics Models
IEEE Robotics and Automation Letters, Robotics and Automation Letters, 3(4):3161-3168, IEEE, 2018 (article)
hi
Block, A. E., Kuchenbecker, K. J.
Softness, Warmth, and Responsiveness Improve Robot Hugs
International Journal of Social Robotics, 11(1):49-64, October 2018 (article)
hi
Burka, A. L.
Instrumentation, Data, and Algorithms for Visually Understanding Haptic Surface Properties
University of Pennsylvania, Philadelphia, USA, August 2018, Department of Electrical and Systems Engineering (phdthesis)
hi
Forte, M. P.
Robust Visual Augmented Reality in Robot-Assisted Surgery
Politecnico di Milano, Milan, Italy, July 2018, Department of Electronic, Information, and Biomedical Engineering (mastersthesis)
hi
Pacchierotti, C., Young, E. M., Kuchenbecker, K. J.
Task-Driven PCA-Based Design Optimization of Wearable Cutaneous Devices
IEEE Robotics and Automation Letters, 3(3):2214-2221, July 2018, Presented at ICRA 2018 (article)
hi
Fitter, N. T., Kuchenbecker, K. J.
Teaching a Robot Bimanual Hand-Clapping Games via Wrist-Worn IMUs
Frontiers in Robotics and Artificial Intelligence, 5(85), July 2018 (article)
ei
Ruiz, F. J. R., Valera, I., Svensson, L., Perez-Cruz, F.
Infinite Factorial Finite State Machine for Blind Multiuser Channel Estimation
IEEE Transactions on Cognitive Communications and Networking, 4(2):177-191, June 2018 (article)
ei
Ewerton, M., Rother, D., Weimar, J., Kollegger, G., Wiemeyer, J., Peters, J., Maeda, G.
Assisting Movement Training and Execution With Visual and Haptic Feedback
Frontiers in Neurorobotics, 12, May 2018 (article)
hi
Kuchenbecker, K. J.
Haptics and Haptic Interfaces
In Encyclopedia of Robotics, (Editors: Marcelo H. Ang and Oussama Khatib and Bruno Siciliano), Springer, May 2018 (incollection)
ei
Manschitz, S., Gienger, M., Kober, J., Peters, J.
Mixture of Attractors: A Novel Movement Primitive Representation for Learning Motor Skills From Demonstrations
IEEE Robotics and Automation Letters, 3(2):926-933, April 2018 (article)
hi
Oquendo, Y. A., Riddle, E. W., Hiller, D., Blinman, T. A., Kuchenbecker, K. J.
Automatically Rating Trainee Skill at a Pediatric Laparoscopic Suturing Task
Surgical Endoscopy, 32(4):1840-1857, April 2018 (article)
ei
Paraschos, A., Rueckert, E., Peters, J., Neumann, G.
Probabilistic movement primitives under unknown system dynamics
Advanced Robotics, 32(6):297-310, April 2018 (article)
ei
Osa, T., Pajarinen, J., Neumann, G., Bagnell, J., Abbeel, P., Peters, J.
An Algorithmic Perspective on Imitation Learning
Foundations and Trends in Robotics, 7(1-2):1-179, March 2018 (article)
ei
Paraschos, A., Daniel, C., Peters, J., Neumann, G.
Using Probabilistic Movement Primitives in Robotics
Autonomous Robots, 42(3):529-551, March 2018 (article)
ei
Kroemer, O., Leischnig, S., Luettgen, S., Peters, J.
A kernel-based approach to learning contact distributions for robot manipulation tasks
Autonomous Robots, 42(3):581-600, March 2018 (article)
ei
Vinogradska, J., Bischoff, B., Peters, J.
Approximate Value Iteration Based on Numerical Quadrature
IEEE Robotics and Automation Letters, 3(2):1330-1337, January 2018 (article)
ei
Yi, Z., Zhang, Y., Peters, J.
Biomimetic Tactile Sensors and Signal Processing with Spike Trains: A Review
Sensors and Actuators A: Physical, 269, pages: 41-52, January 2018 (article)
ei
slt
Shah*, N., Tabibian*, B., Muandet, K., Guyon, I., von Luxburg, U.
Design and Analysis of the NIPS 2016 Review Process
Journal of Machine Learning Research, 19(49):1-34, 2018, *equal contribution (article)
ei
Tanneberg, D., Peters, J., Rueckert, E.
Intrinsic Motivation and Mental Replay enable Efficient Online Adaptation in Stochastic Recurrent Networks
Neural Networks, 109, pages: 67-80, 2018 (article)
ei
Zafar, M. B., Valera, I., Gomez Rodriguez, M., Gummadi, K.
A Flexible Approach for Fair Classification
Journal of Machine Learning, 2018 (article) Accepted
ei
Gomez-Gonzalez, S., Neumann, G., Schölkopf, B., Peters, J.
Adaptation and Robust Learning of Probabilistic Movement Primitives
IEEE Transactions on Robotics, 2018 (article) In revision
ei
Bustamante, S.
A virtual reality environment for experiments in assistive robotics and neural interfaces
Graduate School of Neural Information Processing, Eberhard Karls Universität Tübingen, Germany, 2018 (mastersthesis)
ei
Janzing, D., Wocjan, P.
Does universal controllability of physical systems prohibit thermodynamic cycles?
Open Systems and Information Dynamics, 25(3):1850016, 2018 (article)
ei
Koc, O.
Optimal Trajectory Generation and Learning Control for Robot Table Tennis
Technical University Darmstadt, Germany, 2018 (phdthesis)
ei
Zhang, K., Schölkopf, B., Spirtes, P., Glymour, C.
Learning Causality and Causality-Related Learning: Some Recent Progress
National Science Review, 5(1):26-29, 2018 (article)
hi
Ambron, E., Miller, A., Kuchenbecker, K. J., Buxbaum, L. J., Coslett, H. B.
Immersive Low-Cost Virtual Reality Treatment for Phantom Limb Pain: Evidence from Two Cases
Frontiers in Neurology, 9(67):1-7, 2018 (article)
ei
Koc, O., Maeda, G., Peters, J.
Online optimal trajectory generation for robot table tennis
Robotics and Autonomous Systems, 105, pages: 121-137, 2018 (article)
ei
Pfister*, N., Weichwald*, S., Bülmann, P., Schölkopf, B.
Robustifying Independent Component Analysis by Adjusting for Group-Wise Stationary Noise
2018, *equal contribution (article) Submitted
ei
pn
Muandet, K., Kanagawa, M., Saengkyongam, S., Marukata, S.
Counterfactual Mean Embedding: A Kernel Method for Nonparametric Causal Inference
Arxiv e-prints, arXiv:1805.08845v1 [stat.ML], 2018 (article)
ei
Osa, T., Peters, J., Neumann, G.
Hierarchical Reinforcement Learning of Multiple Grasping Strategies with Human Instructions
Advanced Robotics, 32(18):955-968, 2018 (article)
ei
Gebhard, T.
On the Applicability of Machine Learning to Aid the Search for Gravitational Waves at the LIGO Experiment
Karlsruhe Institute of Technology, Germany, 2018 (mastersthesis)
ei
Simon-Gabriel, C. J.
Distribution-Dissimilarities in Machine Learning
Eberhard Karls Universität Tübingen, Germany, 2018 (phdthesis)
ei
Loktyushin, A., Ehses, P., Schölkopf, B., Scheffler, K.
Autofocusing-based phase correction
Magnetic Resonance in Medicine, 80(3):958-968, 2018 (article)
ei
Hohmann, M. R., Fomina, T., Jayaram, V., Emde, T., Just, J., Synofzik, M., Schölkopf, B., Schöls, L., Grosse-Wentrup, M.
Case series: Slowing alpha rhythm in late-stage ALS patients
Clinical Neurophysiology, 129(2):406-408, 2018 (article)
ei
Šošić, A., Rueckert, E., Peters, J., Zoubir, A., Koeppl, H.
Inverse Reinforcement Learning via Nonparametric Spatio-Temporal Subgoal Modeling
Journal of Machine Learning Research, 19(69):1-45, 2018 (article)
ei
Veiga, F., Peters, J., Hermans, T.
Grip Stabilization of Novel Objects using Slip Prediction
IEEE Transactions on Haptics, 2018 (article) In press
ei
Lechner, T.
Domain Adaptation Under Causal Assumptions
Eberhard Karls Universität Tübingen, Germany, 2018 (mastersthesis)
ei
Kellmeyer, P., Grosse-Wentrup, M., Schulze-Bonhage, A., Ziemann, U., Ball, T.
Electrophysiological correlates of neurodegeneration in motor and non-motor brain regions in amyotrophic lateral sclerosis—implications for brain–computer interfacing
Journal of Neural Engineering, 15(4):041003, IOP Publishing, 2018 (article)
ei
Suter, R.
A Causal Perspective on Deep Representation Learning
ETH Zurich, 2018 (mastersthesis)
ei
Ciliberto, C., Herbster, M., Ialongo, A. D., Pontil, M., Rocchetto, A., Severini, S., Wossnig, L.
Quantum machine learning: a classical perspective
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 474(2209):20170551, 2018 (article)
ei
Schökopf, B.
Maschinelles Lernen: Entwicklung ohne Grenzen?
In Mit Optimismus in die Zukunft schauen. Künstliche Intelligenz - Chancen und Rahmenbedingungen, pages: 26-34, (Editors: Bender, G. and Herbrich, R. and Siebenhaar, K.), B&S Siebenhaar Verlag, 2018 (incollection)
ei
Pfister, N., Bühlmann, P., Schölkopf, B., Peters, J.
Kernel-based tests for joint independence
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 80(1):5-31, 2018 (article)
ei
Babbar, R., Heni, M., Peter, A., Hrabě de Angelis, M., Häring, H., Fritsche, A., Preissl, H., Schölkopf, B., Wagner, R.
Prediction of Glucose Tolerance without an Oral Glucose Tolerance Test
Frontiers in Endocrinology, 9, pages: 82, 2018 (article)
ei
Rojas-Carulla, M., Schölkopf, B., Turner, R., Peters, J.
Invariant Models for Causal Transfer Learning
Journal of Machine Learning Research, 19(36):1-34, 2018 (article)
ei
Jayaram, V., Barachant, A.
MOABB: Trustworthy algorithm benchmarking for BCIs
Journal of Neural Engineering, 15(6):066011, 2018 (article)
ei
Belousov, B., Peters, J.
f-Divergence constrained policy improvement
Journal of Machine Learning Research, 2018 (article) Submitted
ei
Fioravanti*, D., Giarratano*, Y., Maggio*, V., Agostinelli, C., Chierici, M., Jurman, G., Furlanello, C.
Phylogenetic convolutional neural networks in metagenomics
BMC Bioinformatics, 19(2):49 pages, 2018, *equal contribution (article)
ei
Leehr, E. J., Schag, K., Dresler, T., Grosse-Wentrup, M., Hautzinger, M., Fallgatter, A. J., Zipfel, S., Giel, K. E., Ehlis, A.
Food specific inhibitory control under negative mood in binge-eating disorder: Evidence from a multimethod approach
International Journal of Eating Disorders, 51(2):112-123, Wiley Online Library, 2018 (article)
ei
pn
Mahsereci, M.
Probabilistic Approaches to Stochastic Optimization
Eberhard Karls Universität Tübingen, Germany, 2018 (phdthesis)