ei
Gretton, A., Herbrich, R., Smola, A., Bousquet, O., Schölkopf, B.
Kernel Methods for Measuring Independence
Journal of Machine Learning Research, 6, pages: 2075-2129, December 2005 (article)
ei
Quinonero Candela, J., Rasmussen, C.
A Unifying View of Sparse Approximate Gaussian Process Regression
Journal of Machine Learning Research, 6, pages: 1935-1959, December 2005 (article)
ei
Hein, M., Bousquet, O., Schölkopf, B.
Maximal Margin Classification for Metric Spaces
Journal of Computer and System Sciences, 71(3):333-359, October 2005 (article)
ei
Kato, T., Tsuda, K., Asai, K.
Selective integration of multiple biological data for supervised
network inference
Bioinformatics, 21(10):2488 , October 2005 (article)
ei
Kuss, M., Rasmussen, C.
Assessing Approximate Inference for Binary Gaussian Process Classification
Journal of Machine Learning Research, 6, pages: 1679 , October 2005 (article)
ei
Banerjee, A., Dhillon, I., Ghosh, J., Sra, S.
Clustering on the Unit Hypersphere using von Mises-Fisher Distributions
Journal of Machine Learning Research, 6, pages: 1345-1382, September 2005 (article)
ei
Steinke, F., Schölkopf, B., Blanz, V.
Support Vector Machines for 3D Shape Processing
Computer Graphics Forum, 24(3, EUROGRAPHICS 2005):285-294, September 2005 (article)
ei
Tsuda, K., Shin, H., Schölkopf, B.
Fast Protein Classification with Multiple Networks
Bioinformatics, 21(Suppl. 2):59-65, September 2005 (article)
ei
Kim, K., Franz, M., Schölkopf, B.
Iterative Kernel Principal Component Analysis for Image Modeling
IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(9):1351-1366, September 2005 (article)
ei
Schorle, C., Finger, F., Zien, A., Block, J., Gebhard, P., Aigner, T.
Phenotypic characterization of chondrosarcoma-derived cell lines
Cancer Letters, 226(2):143-154, August 2005 (article)
ei
Bartlett, P., Bousquet, O., Mendelson, S.
Local Rademacher Complexities
The Annals of Statistics, 33(4):1497-1537, August 2005 (article)
ei
Ong, CS., Smola, A., Williamson, R.
Learning the Kernel with Hyperkernels
Journal of Machine Learning Research, 6, pages: 1043-1071, July 2005 (article)
ei
Tsuda, K., Rätsch, G.
Image Reconstruction by Linear Programming
IEEE Transactions on Image Processing, 14(6):737-744, June 2005 (article)
ei
Rätsch, G., Sonnenburg, S., Schölkopf, B.
RASE: recognition of alternatively spliced exons in C.elegans
Bioinformatics, 21(Suppl. 1):i369-i377, June 2005 (article)
ei
Tsuda, K., Rätsch, G., Warmuth, M.
Matrix Exponentiated Gradient Updates for On-line Learning and Bregman Projection
Journal of Machine Learning Research, 6, pages: 995-1018, June 2005 (article)
ei
Rosas, P., Wagemans, J., Ernst, M., Wichmann, F.
Texture and haptic cues in slant discrimination: Reliability-based cue weighting without statistically optimal cue combination
Journal of the Optical Society of America A, 22(5):801-809, May 2005 (article)
ei
Kuss, M., Jäkel, F., Wichmann, F.
Bayesian inference for psychometric functions
Journal of Vision, 5(5):478-492, May 2005 (article)
ei
Schmid, M., Davison, T., Henz, S., Pape, U., Demar, M., Vingron, M., Schölkopf, B., Weigel, D., Lohmann, J.
A gene expression map of Arabidopsis thaliana development
Nature Genetics, 37(5):501-506, April 2005 (article)
ei
Chalimourda, A., Schölkopf, B., Smola, A.
Experimentally optimal v in support vector regression for different noise models and parameter settings
Neural Networks, 18(2):205-205, March 2005 (article)
ei
Shin, H., Cho, S.
Invariance of Neighborhood Relation under Input Space to Feature Space Mapping
Pattern Recognition Letters, 26(6):707-718, 2005 (article)
ei
Boucheron, S., Bousquet, O., Lugosi, G.
Theory of Classification: A Survey of Some Recent Advances
ESAIM: Probability and Statistics, 9, pages: 323 , 2005 (article)
ei
Schölkopf, B., Smola, A.
Support Vector Machines and Kernel Algorithms
In Encyclopedia of Biostatistics (2nd edition), Vol. 8, 8, pages: 5328-5335, (Editors: P Armitage and T Colton), John Wiley & Sons, NY USA, 2005 (inbook)
ei
Boucheron, S., Bousquet, O., Lugosi, G., Massart, P.
Moment Inequalities for Functions of Independent Random Variables
To appear in Annals of Probability, 33, pages: 514-560, 2005 (article)
ei
Wagemans, J., Wichmann, F., de Beeck, H.
Visual perception
I: Basic principles
In Handbook of Cognition, pages: 3-47, (Editors: Lamberts, K. , R. Goldstone), Sage, London, 2005 (inbook)
ei
Chen, P., Lin, C., Schölkopf, B.
A tutorial on v-support vector machines
Applied Stochastic Models in Business and Industry, 21(2):111-136, 2005 (article)
ei
Schröder, M., Lal, T., Hinterberger, T., Bogdan, M., Hill, J., Birbaumer, N., Rosenstiel, W., Schölkopf, B.
Robust EEG Channel Selection Across Subjects for Brain Computer Interfaces
EURASIP Journal on Applied Signal Processing, 2005(19, Special Issue: Trends in Brain Computer Interfaces):3103-3112, (Editors: Vesin, J. M., T. Ebrahimi), 2005 (article)
ei
Bousquet, O.
Concentration Inequalities for Sub-Additive Functions Using the Entropy Method
Stochastic Inequalities and Applications, 56, pages: 213-247, Progress in Probability, (Editors: Giné, E., C. Houdré and D. Nualart), November 2003 (article)
ei
Schölkopf, B.
Statistical Learning Theory, Capacity and Complexity
Complexity, 8(4):87-94, July 2003 (article)
ei
Weston, J., Schölkopf, B., Eskin, E., Leslie, C., Noble, W.
Dealing with large Diagonals in Kernel Matrices
Annals of the Institute of Statistical Mathematics, 55(2):391-408, June 2003 (article)
ei
Tsuda, K., Akaho, S., Asai, K.
The em Algorithm for Kernel Matrix Completion with Auxiliary Data
Journal of Machine Learning Research, 4, pages: 67-81, May 2003 (article)
ei
Mika, S., Rätsch, G., Weston, J., Schölkopf, B., Smola, A., Müller, K.
Constructing Descriptive and Discriminative Non-linear Features: Rayleigh Coefficients in Kernel Feature Spaces
IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(5):623-628, May 2003 (article)
ei
Csato, L., Opper, M., Winther, O.
Tractable Inference for Probabilistic Data Models
Complexity, 8(4):64-68, April 2003 (article)
ei
Weston, J., Perez-Cruz, F., Bousquet, O., Chapelle, O., Elisseeff, A., Schölkopf, B.
Feature selection and transduction for prediction of molecular bioactivity for drug design
Bioinformatics, 19(6):764-771, April 2003 (article)
ei
Weston, J., Elisseeff, A., Schölkopf, B., Tipping, M.
Use of the Zero-Norm with Linear Models and Kernel Methods
Journal of Machine Learning Research, 3, pages: 1439-1461, March 2003 (article)
ei
Guyon, I., Elisseeff, A.
An Introduction to Variable and Feature Selection.
Journal of Machine Learning, 3, pages: 1157-1182, 2003 (article)
ei
Perez-Cruz, F., Weston, J., Herrmann, D., Schölkopf, B.
Extension of the nu-SVM range for classification
In Advances in Learning Theory: Methods, Models and Applications, NATO Science Series III: Computer and Systems Sciences, Vol. 190, 190, pages: 179-196, NATO Science Series III: Computer and Systems Sciences, (Editors: J Suykens and G Horvath and S Basu and C Micchelli and J Vandewalle), IOS Press, Amsterdam, 2003 (inbook)
ei
Bousquet, O.
New Approaches to Statistical Learning Theory
Annals of the Institute of Statistical Mathematics, 55(2):371-389, 2003 (article)
ei
Schölkopf, B.
An Introduction to Support Vector Machines
In Recent Advances and Trends in Nonparametric Statistics
, pages: 3-17, (Editors: MG Akritas and DN Politis), Elsevier, Amsterdam, The Netherlands, 2003 (inbook)
ei
Schölkopf, B., Guyon, I., Weston, J.
Statistical Learning and Kernel Methods in Bioinformatics
In Artificial Intelligence and Heuristic Methods in Bioinformatics, 183, pages: 1-21, 3, (Editors: P Frasconi und R Shamir), IOS Press, Amsterdam, The Netherlands, 2003 (inbook)
ei
Schölkopf, B., Smola, A.
A Short Introduction to Learning with Kernels
In Proceedings of the Machine Learning Summer School, Lecture Notes in Artificial Intelligence, Vol. 2600, pages: 41-64, LNAI 2600, (Editors: S Mendelson and AJ Smola), Springer, Berlin, Heidelberg, Germany, 2003 (inbook)
ei
Smola, A., Schölkopf, B.
Bayesian Kernel Methods
In Advanced Lectures on Machine Learning, Machine Learning Summer School 2002, Lecture Notes in Computer Science, Vol. 2600, LNAI 2600, pages: 65-117, 0, (Editors: S Mendelson and AJ Smola), Springer, Berlin, Germany, 2003 (inbook)
ei
Elisseeff, A., Pontil, M.
Stability of ensembles of kernel machines
In 190, pages: 111-124, NATO Science Series III: Computer and Systems Science, (Editors: Suykens, J., G. Horvath, S. Basu, C. Micchelli and J. Vandewalle), IOS press, Netherlands, 2003 (inbook)