105 results
(View BibTeX file of all listed publications)

**Selecting causal brain features with a single conditional independence test per feature**
*Advances in Neural Information Processing Systems 32*, 33rd Annual Conference on Neural Information Processing Systems, December 2019 (conference) Accepted

**Neural Signatures of Motor Skill in the Resting Brain**
*Proceedings of the IEEE International Conference on Systems, Man and Cybernetics (SMC 2019)*, October 2019 (conference) Accepted

**Beta Power May Mediate the Effect of Gamma-TACS on Motor Performance**
*Engineering in Medicine and Biology Conference (EMBC)*, July 2019 (conference) Accepted

**Coordinating Users of Shared Facilities via Data-driven Predictive Assistants and Game Theory**
*Proceedings of the 35th Conference on Uncertainty in Artificial Intelligence (UAI)*, pages: 49, (Editors: Amir Globerson and Ricardo Silva), AUAI Press, July 2019 (conference)

**The Sensitivity of Counterfactual Fairness to Unmeasured Confounding**
*Proceedings of the 35th Conference on Uncertainty in Artificial Intelligence (UAI)*, pages: 213, (Editors: Amir Globerson and Ricardo Silva), AUAI Press, July 2019 (conference)

**The Incomplete Rosetta Stone problem: Identifiability results for Multi-view Nonlinear ICA**
*Proceedings of the 35th Conference on Uncertainty in Artificial Intelligence (UAI)*, pages: 53, (Editors: Amir Globerson and Ricardo Silva), AUAI Press, July 2019, *equal contribution (conference)

**Random Sum-Product Networks: A Simple and Effective Approach to Probabilistic Deep Learning**
*Proceedings of the 35th Conference on Uncertainty in Artificial Intelligence (UAI)*, pages: 124, (Editors: Amir Globerson and Ricardo Silva), AUAI Press, July 2019 (conference)

**Kernel Mean Matching for Content Addressability of GANs**
*Proceedings of the 36th International Conference on Machine Learning (ICML)*, 97, pages: 3140-3151, Proceedings of Machine Learning Research, (Editors: Chaudhuri, Kamalika and Salakhutdinov, Ruslan), PMLR, June 2019, *equal contribution (conference)

**Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations**
*Proceedings of the 36th International Conference on Machine Learning (ICML)*, 97, pages: 4114-4124, Proceedings of Machine Learning Research, (Editors: Chaudhuri, Kamalika and Salakhutdinov, Ruslan), PMLR, June 2019 (conference)

**Local Temporal Bilinear Pooling for Fine-grained Action Parsing**
In *Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)*, IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 2019, June 2019 (inproceedings)

**Generate Semantically Similar Images with Kernel Mean Matching**
*6th Workshop Women in Computer Vision (WiCV) (oral presentation)*, June 2019, *equal contribution (conference) Accepted

**Robustly Disentangled Causal Mechanisms: Validating Deep Representations for Interventional Robustness**
*Proceedings of the 36th International Conference on Machine Learning (ICML)*, 97, pages: 6056-6065, Proceedings of Machine Learning Research, (Editors: Chaudhuri, Kamalika and Salakhutdinov, Ruslan), PMLR, June 2019 (conference)

**First-Order Adversarial Vulnerability of Neural Networks and Input Dimension**
*Proceedings of the 36th International Conference on Machine Learning (ICML)*, 97, pages: 5809-5817, Proceedings of Machine Learning Research, (Editors: Chaudhuri, Kamalika and Salakhutdinov, Ruslan), PMLR, June 2019 (conference)

**Overcoming Mean-Field Approximations in Recurrent Gaussian Process Models**
In *Proceedings of the 36th International Conference on Machine Learning (ICML)*, 97, pages: 2931-2940, Proceedings of Machine Learning Research, (Editors: Chaudhuri, Kamalika and Salakhutdinov, Ruslan), PMLR, June 2019 (inproceedings)

**Meta learning variational inference for prediction**
*7th International Conference on Learning Representations (ICLR)*, May 2019 (conference) Accepted

**Deep Lagrangian Networks: Using Physics as Model Prior for Deep Learning**
*7th International Conference on Learning Representations (ICLR)*, May 2019 (conference) Accepted

**DeepOBS: A Deep Learning Optimizer Benchmark Suite**
*7th International Conference on Learning Representations (ICLR)*, May 2019 (conference) Accepted

**Disentangled State Space Models: Unsupervised Learning of Dynamics across Heterogeneous Environments**
*Deep Generative Models for Highly Structured Data Workshop at ICLR*, May 2019, *equal contribution (conference) Accepted

**SOM-VAE: Interpretable Discrete Representation Learning on Time Series**
*7th International Conference on Learning Representations (ICLR)*, May 2019 (conference) Accepted

**Resampled Priors for Variational Autoencoders**
*22nd International Conference on Artificial Intelligence and Statistics*, April 2019 (conference) Accepted

**Semi-Generative Modelling: Covariate-Shift Adaptation with Cause and Effect Features**
*Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics (AISTATS)*, 89, pages: 1361-1369, (Editors: Kamalika Chaudhuri and Masashi Sugiyama), PMLR, April 2019 (conference)

**Sobolev Descent**
*Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics (AISTATS)*, 89, pages: 2976-2985, (Editors: Kamalika Chaudhuri and Masashi Sugiyama), PMLR, April 2019 (conference)

**Fast and Robust Shortest Paths on Manifolds Learned from Data**
*Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics (AISTATS)*, 89, pages: 1506-1515, (Editors: Kamalika Chaudhuri and Masashi Sugiyama), PMLR, April 2019 (conference)

**Fast Gaussian Process Based Gradient Matching for Parameter Identification in Systems of Nonlinear ODEs**
*Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics (AISTATS)*, 89, pages: 1351-1360, (Editors: Kamalika Chaudhuri and Masashi Sugiyama), PMLR, April 2019 (conference)

**Active Probabilistic Inference on Matrices for Pre-Conditioning in Stochastic Optimization**
*Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics (AISTATS)*, 89, pages: 1448-1457, (Editors: Kamalika Chaudhuri and Masashi Sugiyama), PMLR, April 2019 (conference)

**Witnessing Adversarial Training in Reproducing Kernel Hilbert Spaces**
2019 (conference) Submitted

**AReS and MaRS Adversarial and MMD-Minimizing Regression for SDEs**
*Proceedings of the 36th International Conference on Machine Learning (ICML)*, 97, pages: 1-10, Proceedings of Machine Learning Research, (Editors: Chaudhuri, Kamalika and Salakhutdinov, Ruslan), PMLR, 2019, *equal contribution (conference)

**Kernel Stein Tests for Multiple Model Comparison**
*Advances in Neural Information Processing Systems 32*, 33rd Annual Conference on Neural Information Processing Systems, 2019 (conference) To be published

**MYND: A Platform for Large-scale Neuroscientific Studies**
*Proceedings of the 2019 Conference on Human Factors in Computing Systems (CHI)*, 2019 (conference) Accepted

**A Kernel Stein Test for Comparing Latent Variable Models**
2019 (conference) Submitted

**From Variational to Deterministic Autoencoders**
2019, *equal contribution (conference) Submitted

**Fisher Efficient Inference of Intractable Models**
*Advances in Neural Information Processing Systems 32*, 33rd Annual Conference on Neural Information Processing Systems, 2019 (conference) To be published

**Towards compliant humanoids: an experimental assessment of suitable task space position/orientation controllers**
In *IROS 2007*, 2007, pages: 2520-2527, (Editors: Grant, E. , T. C. Henderson), IEEE Service Center, Piscataway, NJ, USA, IEEE/RSJ International Conference on Intelligent Robots and Systems, November 2007 (inproceedings)

**Performance Stabilization and Improvement in Graph-based Semi-supervised Learning with
Ensemble Method and Graph Sharpening**
In *Korean Data Mining Society Conference*, pages: 257-262, Korean Data Mining Society, Seoul, Korea, Korean Data Mining Society Conference, November 2007 (inproceedings)

**Discriminative Subsequence Mining for Action Classification**
In *ICCV 2007*, pages: 1919-1923, IEEE Computer Society, Los Alamitos, CA, USA, 11th IEEE International Conference on Computer Vision, October 2007 (inproceedings)

**A Hilbert Space Embedding for Distributions**
In *Algorithmic Learning Theory, Lecture Notes in Computer Science 4754 *, pages: 13-31, (Editors: M Hutter and RA Servedio and E Takimoto), Springer, Berlin, Germany, 18th International Conference on Algorithmic Learning Theory (ALT), October 2007 (inproceedings)

**Cluster Identification in Nearest-Neighbor Graphs**
In *ALT 2007*, pages: 196-210, (Editors: Hutter, M. , R. A. Servedio, E. Takimoto), Springer, Berlin, Germany, 18th International Conference on Algorithmic Learning Theory, October 2007 (inproceedings)

**Support Vector Machine Learning for Interdependent and Structured Output Spaces**
In *Predicting Structured Data*, pages: 85-104, Advances in neural information processing systems, (Editors: Bakir, G. H. , T. Hofmann, B. Schölkopf, A. J. Smola, B. Taskar, S. V. N. Vishwanathan), MIT Press, Cambridge, MA, USA, September 2007 (inbook)

**Inducing Metric Violations in Human Similarity Judgements**
In *Advances in Neural Information Processing Systems 19*, pages: 777-784, (Editors: Schölkopf, B. , J. Platt, T. Hofmann), MIT Press, Cambridge, MA, USA, Twentieth Annual Conference on Neural Information Processing Systems (NIPS), September 2007 (inproceedings)

**Cross-Validation Optimization for Large Scale Hierarchical
Classification Kernel Methods**
In *Advances in Neural Information Processing Systems 19*, pages: 1233-1240, (Editors: Schölkopf, B. , J. Platt, T. Hofmann), MIT Press, Cambridge, MA, USA, Twentieth Annual Conference on Neural Information Processing Systems (NIPS), September 2007 (inproceedings)

**A Local Learning Approach for Clustering**
In *Advances in Neural Information Processing Systems 19*, pages: 1529-1536, (Editors: B Schölkopf and J Platt and T Hofmann), MIT Press, Cambridge, MA, USA, 20th Annual Conference on Neural Information Processing Systems (NIPS), September 2007 (inproceedings)

**Brisk Kernel ICA**
In *Large Scale Kernel Machines*, pages: 225-250, Neural Information Processing, (Editors: Bottou, L. , O. Chapelle, D. DeCoste, J. Weston), MIT Press, Cambridge, MA, USA, September 2007 (inbook)

**Branch and Bound for Semi-Supervised Support Vector Machines**
In *Advances in Neural Information Processing Systems 19*, pages: 217-224, (Editors: Schölkopf, B. , J. Platt, T. Hofmann), MIT Press, Cambridge, MA, USA, Twentieth Annual Conference on Neural Information Processing Systems (NIPS), September 2007 (inproceedings)

**A Kernel Method for the Two-Sample-Problem**
In *Advances in Neural Information Processing Systems 19*, pages: 513-520, (Editors: B Schölkopf and J Platt and T Hofmann), MIT Press, Cambridge, MA, USA, 20th Annual Conference on Neural Information Processing Systems (NIPS), September 2007 (inproceedings)

**An Efficient Method for Gradient-Based Adaptation of Hyperparameters in SVM Models**
In *Advances in Neural Information Processing Systems 19*, pages: 673-680, (Editors: Schölkopf, B. , J. Platt, T. Hofmann), MIT Press, Cambridge, MA, USA, Twentieth Annual Conference on Neural Information Processing Systems (NIPS), September 2007 (inproceedings)

**Learning Dense 3D Correspondence**
In *Advances in Neural Information Processing Systems 19*, pages: 1313-1320, (Editors: B Schölkopf and J Platt and T Hofmann), MIT Press, Cambridge, MA, USA, 20th Annual Conference on Neural Information Processing Systems (NIPS), September 2007 (inproceedings)

**Optimal Dominant Motion Estimation using Adaptive Search of Transformation Space**
In *DAGM 2007*, pages: 204-215, (Editors: Hamprecht, F. A., C. Schnörr, B. Jähne), Springer, Berlin, Germany, 29th Annual Symposium of the German Association for Pattern Recognition, September 2007 (inproceedings)

**Training a Support Vector Machine in the Primal**
In *Large Scale Kernel Machines*, pages: 29-50, Neural Information Processing, (Editors: Bottou, L. , O. Chapelle, D. DeCoste, J. Weston), MIT Press, Cambridge, MA, USA, September 2007, This is a slightly updated version of the Neural Computation paper (inbook)

**Approximation Methods for Gaussian Process Regression**
In *Large-Scale Kernel Machines*, pages: 203-223, Neural Information Processing, (Editors: Bottou, L. , O. Chapelle, D. DeCoste, J. Weston), MIT Press, Cambridge, MA, USA, September 2007 (inbook)

**Advances in Neural Information Processing Systems 19: Proceedings of the 2006 Conference**
*Proceedings of the Twentieth Annual Conference on Neural Information Processing Systems (NIPS 2006)*, pages: 1690, MIT Press, Cambridge, MA, USA, 20th Annual Conference on Neural Information Processing Systems (NIPS), September 2007 (proceedings)