Header logo is


2019


Thumb xl cell patterning with acoustic hologram
Acoustic Holographic Cell Patterning in a Biocompatible Hydrogel

Ma, Z., Holle, A., Melde, K., Qiu, T., Poeppel, K., Kadiri, V., Fischer, P.

Adv. Mat., October 2019 (article)

Abstract
Acoustophoresis is promising as a rapid, biocompatible, non-contact cell manipulation method, where cells are arranged along the nodes or antinodes of the acoustic field. Typically, the acoustic field is formed in a resonator, which results in highly symmetric regular patterns. However, arbitrary, non-symmetrically shaped cell assemblies are necessary to obtain the irregular cellular arrangements found in biological tissues. We show that arbitrarily shaped cell patterns can be obtained from the complex acoustic field distribution defined by an acoustic hologram. Attenuation of the sound field induces localized acoustic streaming and the resultant convection flow gently delivers the suspended cells to the image plane where they form the designed pattern. We show that the process can be implemented in a biocompatible collagen solution, which can then undergo gelation to immobilize the cell pattern inside the viscoelastic matrix. The patterned cells exhibit F-actin-based protrusions, which indicates that the cells grow and thrive within the matrix. Cell viability assays and brightfield imaging after one week confirm cell survival and that the patterns persist. Acoustophoretic cell manipulation by holographic fields thus holds promise for non-contact, long-range, long-term cellular pattern formation, with a wide variety of potential applications in tissue engineering and mechanobiology.

pf

link (url) DOI [BibTex]


Thumb xl phantom surgery
A High-Fidelity Phantom for the Simulation and Quantitative Evaluation of Transurethral Resection of the Prostate

Choi, E., Adams, F., Gengenbacher, A., Schlager, D., Palagi, S., Müller, P., Wetterauer, U., Miernik, A., Fischer, P., Qiu, T.

Annals of Biomed. Eng., October 2019 (article)

Abstract
Transurethral resection of the prostate (TURP) is a minimally invasive endoscopic procedure that requires experience and skill of the surgeon. To permit surgical training under realistic conditions we report a novel phantom of the human prostate that can be resected with TURP. The phantom mirrors the anatomy and haptic properties of the gland and permits quantitative evaluation of important surgical performance indicators. Mixtures of soft materials are engineered to mimic the physical properties of the human tissue, including the mechanical strength, the electrical and thermal conductivity, and the appearance under an endoscope. Electrocautery resection of the phantom closely resembles the procedure on human tissue. Ultrasound contrast agent was applied to the central zone, which was not detectable by the surgeon during the surgery but showed high contrast when imaged after the surgery, to serve as a label for the quantitative evaluation of the surgery. Quantitative criteria for performance assessment are established and evaluated by automated image analysis. We present the workflow of a surgical simulation on a prostate phantom followed by quantitative evaluation of the surgical performance. Surgery on the phantom is useful for medical training, and enables the development and testing of endoscopic and minimally invasive surgical instruments.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl vision
Interactive Materials – Drivers of Future Robotic Systems

Fischer, P.

Adv. Mat., October 2019 (article)

Abstract
A robot senses its environment, processes the sensory information, acts in response to these inputs, and possibly communicates with the outside world. Robots generally achieve these tasks with electronics-based hardware or by receiving inputs from some external hardware. In contrast, simple microorganisms can autonomously perceive, act, and communicate via purely physicochemical processes in soft material systems. A key property of biological systems is that they are built from energy-consuming ‘active’ units. Exciting developments in material science show that even very simple artificial active building blocks can show surprisingly rich emergent behaviors. Active non-equilibrium systems are therefore predicted to play an essential role to realize interactive materials. A major challenge is to find robust ways to couple and integrate the energy-consuming building blocks to the mechanical structure of the material. However, success in this endeavor will lead to a new generation of sophisticated micro- and soft-robotic systems that can operate autonomously.

pf

[BibTex]


Thumb xl plasmonic dimers
Arrays of plasmonic nanoparticle dimers with defined nanogap spacers

Jeong, H., Adams, M. C., Guenther, J., Alarcon-Correa, M., Kim, I., Choi, E., Miksch, C., Mark, A. F. M., Mark, A. G., Fischer, P.

ACS Nano, September 2019 (article)

Abstract
Plasmonic molecules are building blocks of metallic nanostructures that give rise to intriguing optical phenomena with similarities to those seen in molecular systems. The ability to design plasmonic hybrid structures and molecules with nanometric resolution would enable applications in optical metamaterials and sensing that presently cannot be demonstrated, because of a lack of suitable fabrication methods allowing the structural control of the plasmonic atoms on a large scale. Here we demonstrate a wafer-scale “lithography-free” parallel fabrication scheme to realize nanogap plasmonic meta-molecules with precise control over their size, shape, material, and orientation. We demonstrate how we can tune the corresponding coupled resonances through the entire visible spectrum. Our fabrication method, based on glancing angle physical vapor deposition with gradient shadowing, permits critical parameters to be varied across the wafer and thus is ideally suited to screen potential structures. We obtain billions of aligned dimer structures with controlled variation of the spectral properties across the wafer. We spectroscopically map the plasmonic resonances of gold dimer structures and show that they not only are in good agreement with numerically modeled spectra, but also remain functional, at least for a year, in ambient conditions.

pf

link (url) DOI [BibTex]


no image
Convolutional neural networks: A magic bullet for gravitational-wave detection?

Gebhard, T., Kilbertus, N., Harry, I., Schölkopf, B.

Physical Review D, 100(6):063015, American Physical Society, September 2019 (article)

ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Data scarcity, robustness and extreme multi-label classification

Babbar, R., Schölkopf, B.

Machine Learning, 108(8):1329-1351, September 2019, Special Issue of the ECML PKDD 2019 Journal Track (article)

ei

DOI [BibTex]

DOI [BibTex]


Thumb xl enzyme nanonets toc
Genetically modified M13 bacteriophage nanonets for enzyme catalysis and recovery

Kadiri, V. M., Alarcon-Correa, M., Guenther, J. P., Ruppert, J., Bill, J., Rothenstein, D., Fischer, P.

Catalysts, 9, pages: 723, August 2019 (article)

Abstract
Enzyme-based biocatalysis exhibits multiple advantages over inorganic catalysts, including the biocompatibility and the unchallenged specificity of enzymes towards their substrate. The recovery and repeated use of enzymes is essential for any realistic application in biotechnology, but is not easily achieved with current strategies. For this purpose, enzymes are often immobilized on inorganic scaffolds, which could entail a reduction of the enzymes’ activity. Here, we show that immobilization to a nano-scaled biological scaffold, a nanonetwork of end-to-end cross-linked M13 bacteriophages, ensures high enzymatic activity and at the same time allows for the simple recovery of the enzymes. The bacteriophages have been genetically engineered to express AviTags at their ends, which permit biotinylation and their specific end-to-end self-assembly while allowing space on the major coat protein for enzyme coupling. We demonstrate that the phages form nanonetwork structures and that these so-called nanonets remain highly active even after re-using the nanonets multiple times in a flow-through reactor.

pf

link (url) DOI [BibTex]


Thumb xl special issue adv opt mat
Light-controlled micromotors and soft microrobots

Palagi, S., Singh, D. P., Fischer, P.

Adv. Opt. Mat., 7, pages: 1900370, August 2019 (article)

Abstract
Mobile microscale devices and microrobots can be powered by catalytic reactions (chemical micromotors) or by external fields. This report is focused on the role of light as a versatile means for wirelessly powering and controlling such microdevices. Recent advances in the development of autonomous micromotors are discussed, where light permits their actuation with unprecedented control and thereby enables advances in the field of active matter. In addition, structuring the light field is a new means to drive soft microrobots that are based on (photo‐) responsive polymers. The behavior of the two main classes of thermo‐ and photoresponsive polymers adopted in microrobotics (poly(N‐isopropylacrylamide) and liquid‐crystal elastomers) is analyzed, and recent applications are reported. The advantages and limitations of controlling micromotors and microrobots by light are reviewed, and some of the remaining challenges in the development of novel photo‐active materials for micromotors and microrobots are discussed.

pf

link (url) DOI [BibTex]


Thumb xl m13 bacteriophages
Self-Assembled Phage-Based Colloids for High Localized Enzymatic Activity

Alarcon-Correa, M., Guenther, J., Troll, J., Kadiri, V. M., Bill, J., Fischer, P., Rothenstein, D.

ACS Nano, March 2019 (article)

Abstract
Catalytically active colloids are model systems for chemical motors and active matter. It is desirable to replace the inorganic catalysts and the toxic fuels that are often used, with biocompatible enzymatic reactions. However, compared to inorganic catalysts, enzyme-coated colloids tend to exhibit less activity. Here, we show that the self-assembly of genetically engineered M13 bacteriophages that bind enzymes to magnetic beads ensures high and localized enzymatic activity. These phage-decorated colloids provide a proteinaceous environment for directed enzyme immobilization. The magnetic properties of the colloidal carrier particle permit repeated enzyme recovery from a reaction solution, while the enzymatic activity is retained. Moreover, localizing the phage-based construct with a magnetic field in a microcontainer allows the enzyme-phage-colloids to function as an enzymatic micropump, where the enzymatic reaction generates a fluid flow. This system shows the fastest fluid flow reported to date by a biocompatible enzymatic micropump. In addition, it is functional in complex media including blood where the enzyme driven micropump can be powered at the physiological blood-urea concentration.

pf

link (url) DOI [BibTex]


Thumb xl jcp pfg nmr
Absolute diffusion measurements of active enzyme solutions by NMR

Guenther, J., Majer, G., Fischer, P.

J. Chem. Phys., 150(124201), March 2019 (article)

Abstract
The diffusion of enzymes is of fundamental importance for many biochemical processes. Enhanced or directed enzyme diffusion can alter the accessibility of substrates and the organization of enzymes within cells. Several studies based on fluorescence correlation spectroscopy (FCS) report enhanced diffusion of enzymes upon interaction with their substrate or inhibitor. In this context, major importance is given to the enzyme fructose-bisphosphate aldolase, for which enhanced diffusion has been reported even though the catalysed reaction is endothermic. Additionally, enhanced diffusion of tracer particles surrounding the active aldolase enzymes has been reported. These studies suggest that active enzymes can act as chemical motors that self-propel and give rise to enhanced diffusion. However, fluorescence studies of enzymes can, despite several advantages, suffer from artefacts. Here we show that the absolute diffusion coefficients of active enzyme solutions can be determined with Pulsed Field Gradient Nuclear Magnetic Resonance (PFG-NMR). The advantage of PFG-NMR is that the motion of the molecule of interest is directly observed in its native state without the need for any labelling. Further, PFG-NMR is model-free and thus yields absolute diffusion constants. Our PFG-NMR experiments of solutions containing active fructose-bisphosphate aldolase from rabbit muscle do not show any diffusion enhancement for the active enzymes nor the surrounding molecules. Additionally, we do not observe any diffusion enhancement of aldolase in the presence of its inhibitor pyrophosphate.

pf

link (url) DOI [BibTex]


Thumb xl activeoptorheologicalmedium
Chemical Nanomotors at the Gram Scale Form a Dense Active Optorheological Medium

Choudhury, U., Singh, D. P., Qiu, T., Fischer, P.

Adv. Mat., (1807382), Febuary 2019 (article)

Abstract
The rheological properties of a colloidal suspension are a function of the concentration of the colloids and their interactions. While suspensions of passive colloids are well studied and have been shown to form crystals, gels, and glasses, examples of energy‐consuming “active” colloidal suspensions are still largely unexplored. Active suspensions of biological matter, such as motile bacteria or dense mixtures of active actin–motor–protein mixtures have, respectively, reveals superfluid‐like and gel‐like states. Attractive inanimate systems for active matter are chemically self‐propelled particles. It has so far been challenging to use these swimming particles at high enough densities to affect the bulk material properties of the suspension. Here, it is shown that light‐triggered asymmetric titanium dioxide that self‐propel, can be obtained in large quantities, and self‐organize to make a gram‐scale active medium. The suspension shows an activity‐dependent tenfold reversible change in its bulk viscosity.

pf

link (url) DOI [BibTex]


Thumb xl hyperrayleigh
First Observation of Optical Activity in Hyper-Rayleigh Scattering

Collins, J., Rusimova, K., Hooper, D., Jeong, H. H., Ohnoutek, L., Pradaux-Caggiano, F., Verbiest, T., Carbery, D., Fischer, P., Valev, V.

Phys. Rev. X, 9(011024), January 2019 (article)

Abstract
Chiral nano- or metamaterials and surfaces enable striking photonic properties, such as negative refractive index and superchiral light, driving promising applications in novel optical components, nanorobotics, and enhanced chiral molecular interactions with light. In characterizing chirality, although nonlinear chiroptical techniques are typically much more sensitive than their linear optical counterparts, separating true chirality from anisotropy is a major challenge. Here, we report the first observation of optical activity in second-harmonic hyper-Rayleigh scattering (HRS). We demonstrate the effect in a 3D isotropic suspension of Ag nanohelices in water. The effect is 5 orders of magnitude stronger than linear optical activity and is well pronounced above the multiphoton luminescence background. Because of its sensitivity, isotropic environment, and straightforward experimental geometry, HRS optical activity constitutes a fundamental experimental breakthrough in chiral photonics for media including nanomaterials, metamaterials, and chemical molecules.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
A 32-channel multi-coil setup optimized for human brain shimming at 9.4T

Aghaeifar, A., Zhou, J., Heule, R., Tabibian, B., Schölkopf, B., Jia, F., Zaitsev, M., Scheffler, K.

Magnetic Resonance in Medicine, 2019, (Early View) (article)

ei

DOI [BibTex]

DOI [BibTex]


Thumb xl fig multidimensional contrast limited adaptive histogram equalization kb
Multidimensional Contrast Limited Adaptive Histogram Equalization

Stimper, V., Bauer, S., Ernstorfer, R., Schölkopf, B., Xian, R. P.

IEEE Access, 7, pages: 165437-165447, 2019 (article)

ei

arXiv link (url) DOI [BibTex]

arXiv link (url) DOI [BibTex]


no image
Enhancing Human Learning via Spaced Repetition Optimization

Tabibian, B., Upadhyay, U., De, A., Zarezade, A., Schölkopf, B., Gomez Rodriguez, M.

Proceedings of the National Academy of Sciences, 2019, PNAS published ahead of print January 22, 2019 (article)

ei

DOI Project Page Project Page [BibTex]

DOI Project Page Project Page [BibTex]


Thumb xl screenshot 2019 03 25 at 14.29.22
Learning to Control Highly Accelerated Ballistic Movements on Muscular Robots

Büchler, D., Calandra, R., Peters, J.

2019 (article) Submitted

Abstract
High-speed and high-acceleration movements are inherently hard to control. Applying learning to the control of such motions on anthropomorphic robot arms can improve the accuracy of the control but might damage the system. The inherent exploration of learning approaches can lead to instabilities and the robot reaching joint limits at high speeds. Having hardware that enables safe exploration of high-speed and high-acceleration movements is therefore desirable. To address this issue, we propose to use robots actuated by Pneumatic Artificial Muscles (PAMs). In this paper, we present a four degrees of freedom (DoFs) robot arm that reaches high joint angle accelerations of up to 28000 °/s^2 while avoiding dangerous joint limits thanks to the antagonistic actuation and limits on the air pressure ranges. With this robot arm, we are able to tune control parameters using Bayesian optimization directly on the hardware without additional safety considerations. The achieved tracking performance on a fast trajectory exceeds previous results on comparable PAM-driven robots. We also show that our system can be controlled well on slow trajectories with PID controllers due to careful construction considerations such as minimal bending of cables, lightweight kinematics and minimal contact between PAMs and PAMs with the links. Finally, we propose a novel technique to control the the co-contraction of antagonistic muscle pairs. Experimental results illustrate that choosing the optimal co-contraction level is vital to reach better tracking performance. Through the use of PAM-driven robots and learning, we do a small step towards the future development of robots capable of more human-like motions.

ei

Arxiv Video [BibTex]


no image
Inferring causation from time series with perspectives in Earth system sciences

Runge, J., Bathiany, S., Bollt, E., Camps-Valls, G., Coumou, D., Deyle, E., Glymour, C., Kretschmer, M., Mahecha, M., van Nes, E., Peters, J., Quax, R., Reichstein, M., Scheffer, M. S. B., Spirtes, P., Sugihara, G., Sun, J., Zhang, K., Zscheischler, J.

Nature Communications, 2019 (article) In revision

ei

[BibTex]

[BibTex]


no image
Eigendecompositions of Transfer Operators in Reproducing Kernel Hilbert Spaces

Klus, S., Schuster, I., Muandet, K.

Journal of Nonlinear Science, 2019, First Online: 21 August 2019 (article)

ei

DOI [BibTex]

DOI [BibTex]

2013


no image
Correlation of Simultaneously Acquired Diffusion-Weighted Imaging and 2-Deoxy-[18F] fluoro-2-D-glucose Positron Emission Tomography of Pulmonary Lesions in a Dedicated Whole-Body Magnetic Resonance/Positron Emission Tomography System

Schmidt, H., Brendle, C., Schraml, C., Martirosian, P., Bezrukov, I., Hetzel, J., Müller, M., Sauter, A., Claussen, C., Pfannenberg, C., Schwenzer, N.

Investigative Radiology, 48(5):247-255, May 2013 (article)

ei

Web [BibTex]

2013


Web [BibTex]


no image
Replacing Causal Faithfulness with Algorithmic Independence of Conditionals

Lemeire, J., Janzing, D.

Minds and Machines, 23(2):227-249, May 2013 (article)

Abstract
Independence of Conditionals (IC) has recently been proposed as a basic rule for causal structure learning. If a Bayesian network represents the causal structure, its Conditional Probability Distributions (CPDs) should be algorithmically independent. In this paper we compare IC with causal faithfulness (FF), stating that only those conditional independences that are implied by the causal Markov condition hold true. The latter is a basic postulate in common approaches to causal structure learning. The common spirit of FF and IC is to reject causal graphs for which the joint distribution looks ‘non-generic’. The difference lies in the notion of genericity: FF sometimes rejects models just because one of the CPDs is simple, for instance if the CPD describes a deterministic relation. IC does not behave in this undesirable way. It only rejects a model when there is a non-generic relation between different CPDs although each CPD looks generic when considered separately. Moreover, it detects relations between CPDs that cannot be captured by conditional independences. IC therefore helps in distinguishing causal graphs that induce the same conditional independences (i.e., they belong to the same Markov equivalence class). The usual justification for FF implicitly assumes a prior that is a probability density on the parameter space. IC can be justified by Solomonoff’s universal prior, assigning non-zero probability to those points in parameter space that have a finite description. In this way, it favours simple CPDs, and therefore respects Occam’s razor. Since Kolmogorov complexity is uncomputable, IC is not directly applicable in practice. We argue that it is nevertheless helpful, since it has already served as inspiration and justification for novel causal inference algorithms.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
What can neurons do for their brain? Communicate selectivity with bursts

Balduzzi, D., Tononi, G.

Theory in Biosciences , 132(1):27-39, Springer, March 2013 (article)

Abstract
Neurons deep in cortex interact with the environment extremely indirectly; the spikes they receive and produce are pre- and post-processed by millions of other neurons. This paper proposes two information-theoretic constraints guiding the production of spikes, that help ensure bursting activity deep in cortex relates meaningfully to events in the environment. First, neurons should emphasize selective responses with bursts. Second, neurons should propagate selective inputs by burst-firing in response to them. We show the constraints are necessary for bursts to dominate information-transfer within cortex, thereby providing a substrate allowing neurons to distribute credit amongst themselves. Finally, since synaptic plasticity degrades the ability of neurons to burst selectively, we argue that homeostatic regulation of synaptic weights is necessary, and that it is best performed offline during sleep.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Apprenticeship Learning with Few Examples

Boularias, A., Chaib-draa, B.

Neurocomputing, 104, pages: 83-96, March 2013 (article)

Abstract
We consider the problem of imitation learning when the examples, provided by an expert human, are scarce. Apprenticeship learning via inverse reinforcement learning provides an efficient tool for generalizing the examples, based on the assumption that the expert's policy maximizes a value function, which is a linear combination of state and action features. Most apprenticeship learning algorithms use only simple empirical averages of the features in the demonstrations as a statistics of the expert's policy. However, this method is efficient only when the number of examples is sufficiently large to cover most of the states, or the dynamics of the system is nearly deterministic. In this paper, we show that the quality of the learned policies is sensitive to the error in estimating the averages of the features when the dynamics of the system is stochastic. To reduce this error, we introduce two new approaches for bootstrapping the demonstrations by assuming that the expert is near-optimal and the dynamics of the system is known. In the first approach, the expert's examples are used to learn a reward function and to generate furthermore examples from the corresponding optimal policy. The second approach uses a transfer technique, known as graph homomorphism, in order to generalize the expert's actions to unvisited regions of the state space. Empirical results on simulated robot navigation problems show that our approach is able to learn sufficiently good policies from a significantly small number of examples.

ei

Web DOI [BibTex]

Web DOI [BibTex]


Thumb xl thumb hennigk2012 2
Quasi-Newton Methods: A New Direction

Hennig, P., Kiefel, M.

Journal of Machine Learning Research, 14(1):843-865, March 2013 (article)

Abstract
Four decades after their invention, quasi-Newton methods are still state of the art in unconstrained numerical optimization. Although not usually interpreted thus, these are learning algorithms that fit a local quadratic approximation to the objective function. We show that many, including the most popular, quasi-Newton methods can be interpreted as approximations of Bayesian linear regression under varying prior assumptions. This new notion elucidates some shortcomings of classical algorithms, and lights the way to a novel nonparametric quasi-Newton method, which is able to make more efficient use of available information at computational cost similar to its predecessors.

ei ps pn

website+code pdf link (url) [BibTex]

website+code pdf link (url) [BibTex]


no image
Regional effects of magnetization dispersion on quantitative perfusion imaging for pulsed and continuous arterial spin labeling

Cavusoglu, M., Pohmann, R., Burger, H. C., Uludag, K.

Magnetic Resonance in Medicine, 69(2):524-530, Febuary 2013 (article)

Abstract
Most experiments assume a global transit delay time with blood flowing from the tagging region to the imaging slice in plug flow without any dispersion of the magnetization. However, because of cardiac pulsation, nonuniform cross-sectional flow profile, and complex vessel networks, the transit delay time is not a single value but follows a distribution. In this study, we explored the regional effects of magnetization dispersion on quantitative perfusion imaging for varying transit times within a very large interval from the direct comparison of pulsed, pseudo-continuous, and dual-coil continuous arterial spin labeling encoding schemes. Longer distances between tagging and imaging region typically used for continuous tagging schemes enhance the regional bias on the quantitative cerebral blood flow measurement causing an underestimation up to 37% when plug flow is assumed as in the standard model.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
The multivariate Watson distribution: Maximum-likelihood estimation and other aspects

Sra, S., Karp, D.

Journal of Multivariate Analysis, 114, pages: 256-269, February 2013 (article)

Abstract
This paper studies fundamental aspects of modelling data using multivariate Watson distributions. Although these distributions are natural for modelling axially symmetric data (i.e., unit vectors where View the MathML source are equivalent), for high-dimensions using them can be difficult—largely because for Watson distributions even basic tasks such as maximum-likelihood are numerically challenging. To tackle the numerical difficulties some approximations have been derived. But these are either grossly inaccurate in high-dimensions [K.V. Mardia, P. Jupp, Directional Statistics, second ed., John Wiley & Sons, 2000] or when reasonably accurate [A. Bijral, M. Breitenbach, G.Z. Grudic, Mixture of Watson distributions: a generative model for hyperspherical embeddings, in: Artificial Intelligence and Statistics, AISTATS 2007, 2007, pp. 35–42], they lack theoretical justification. We derive new approximations to the maximum-likelihood estimates; our approximations are theoretically well-defined, numerically accurate, and easy to compute. We build on our parameter estimation and discuss mixture-modelling with Watson distributions; here we uncover a hitherto unknown connection to the “diametrical clustering” algorithm of Dhillon et al. [I.S. Dhillon, E.M. Marcotte, U. Roshan, Diametrical clustering for identifying anticorrelated gene clusters, Bioinformatics 19 (13) (2003) 1612–1619].

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
How the result of graph clustering methods depends on the construction of the graph

Maier, M., von Luxburg, U., Hein, M.

ESAIM: Probability & Statistics, 17, pages: 370-418, January 2013 (article)

Abstract
We study the scenario of graph-based clustering algorithms such as spectral clustering. Given a set of data points, one rst has to construct a graph on the data points and then apply a graph clustering algorithm to nd a suitable partition of the graph. Our main question is if and how the construction of the graph (choice of the graph, choice of parameters, choice of weights) in uences the outcome of the nal clustering result. To this end we study the convergence of cluster quality measures such as the normalized cut or the Cheeger cut on various kinds of random geometric graphs as the sample size tends to in nity. It turns out that the limit values of the same objective function are systematically di erent on di erent types of graphs. This implies that clustering results systematically depend on the graph and can be very di erent for di erent types of graph. We provide examples to illustrate the implications on spectral clustering.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Explicit eigenvalues of certain scaled trigonometric matrices

Sra, S.

Linear Algebra and its Applications, 438(1):173-181, January 2013 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
How Sensitive Is the Human Visual System to the Local Statistics of Natural Images?

Gerhard, H., Wichmann, F., Bethge, M.

PLoS Computational Biology, 9(1):e1002873, January 2013 (article)

Abstract
Several aspects of primate visual physiology have been identified as adaptations to local regularities of natural images. However, much less work has measured visual sensitivity to local natural image regularities. Most previous work focuses on global perception of large images and shows that observers are more sensitive to visual information when image properties resemble those of natural images. In this work we measure human sensitivity to local natural image regularities using stimuli generated by patch-based probabilistic natural image models that have been related to primate visual physiology. We find that human observers can learn to discriminate the statistical regularities of natural image patches from those represented by current natural image models after very few exposures and that discriminability depends on the degree of regularities captured by the model. The quick learning we observed suggests that the human visual system is biased for processing natural images, even at very fine spatial scales, and that it has a surprisingly large knowledge of the regularities in natural images, at least in comparison to the state-of-the-art statistical models of natural images.

ei

DOI [BibTex]

DOI [BibTex]


no image
A neural population model for visual pattern detection

Goris, R., Putzeys, T., Wagemans, J., Wichmann, F.

Psychological Review, 120(3):472–496, 2013 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Accurate indel prediction using paired-end short reads

Grimm, D., Hagmann, J., Koenig, D., Weigel, D., Borgwardt, KM.

BMC Genomics, 14(132), 2013 (article)

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Counterfactual Reasoning and Learning Systems: The Example of Computational Advertising

Bottou, L., Peters, J., Quiñonero-Candela, J., Charles, D., Chickering, D., Portugualy, E., Ray, D., Simard, P., Snelson, E.

Journal of Machine Learning Research, 14, pages: 3207-3260, 2013 (article)

ei

Web link (url) [BibTex]

Web link (url) [BibTex]


no image
When luminance increment thresholds depend on apparent lightness

Maertens, M., Wichmann, F.

Journal of Vision, 13(6):1-11, 2013 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Efficient network-guided multi-locus association mapping with graph cuts

Azencott, C., Grimm, D., Sugiyama, M., Kawahara, Y., Borgwardt, K.

Bioinformatics, 29(13):i171-i179, 2013 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Quantifying causal influences

Janzing, D., Balduzzi, D., Grosse-Wentrup, M., Schölkopf, B.

Annals of Statistics, 41(5):2324-2358, 2013 (article)

ei

Web [BibTex]

Web [BibTex]


no image
Probabilistic movement modeling for intention inference in human-robot interaction

Wang, Z., Mülling, K., Deisenroth, M., Ben Amor, H., Vogt, D., Schölkopf, B., Peters, J.

International Journal of Robotics Research, 32(7):841-858, 2013 (article)

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Blind Retrospective Motion Correction of MR Images

Loktyushin, A., Nickisch, H., Pohmann, R., Schölkopf, B.

Magnetic Resonance in Medicine (MRM), 70(6):1608–1618, 2013 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Modeling fixation locations using spatial point processes

Barthelmé, S., Trukenbrod, H., Engbert, R., Wichmann, F.

Journal of Vision, 13(12):1-34, 2013 (article)

Abstract
Whenever eye movements are measured, a central part of the analysis has to do with where subjects fixate and why they fixated where they fixated. To a first approximation, a set of fixations can be viewed as a set of points in space; this implies that fixations are spatial data and that the analysis of fixation locations can be beneficially thought of as a spatial statistics problem. We argue that thinking of fixation locations as arising from point processes is a very fruitful framework for eye-movement data, helping turn qualitative questions into quantitative ones. We provide a tutorial introduction to some of the main ideas of the field of spatial statistics, focusing especially on spatial Poisson processes. We show how point processes help relate image properties to fixation locations. In particular we show how point processes naturally express the idea that image features' predictability for fixations may vary from one image to another. We review other methods of analysis used in the literature, show how they relate to point process theory, and argue that thinking in terms of point processes substantially extends the range of analyses that can be performed and clarify their interpretation.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
A probabilistic model for secondary structure prediction from protein chemical shifts

Mechelke, M., Habeck, M.

Proteins: Structure, Function, and Bioinformatics, 81(6):984–993, 2013 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Climate Extremes and the Carbon Cycle

Reichstein, M., Bahn, M., Ciais, P., Frank, D., Mahecha, M., Seneviratne, S., Zscheischler, J., Beer, C., Buchmann, N., Frank, D., Papale, D., Rammig, A., Smith, P., Thonicke, K., van der Velde, M., Vicca, S., Walz, A., Wattenbach, M.

Nature, 500, pages: 287-295, 2013 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Identification of stimulus cues in narrow-band tone-in-noise detection using sparse observer models

Schönfelder, V., Wichmann, F.

Journal of the Acoustical Society of America, 134(1):447-463, 2013 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Probabilistic Model-based Imitation Learning

Englert, P., Paraschos, A., Peters, J., Deisenroth, M.

Adaptive Behavior Journal, 21(5):388-403, 2013 (article)

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Metabolic cost as an organizing principle for cooperative learning

Balduzzi, D., Ortega, P., Besserve, M.

Advances in Complex Systems, 16(02n03):1350012, 2013 (article)

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
MR-based PET Attenuation Correction for PET/MR Imaging

Bezrukov, I., Mantlik, F., Schmidt, H., Schölkopf, B., Pichler, B.

Seminars in Nuclear Medicine, 43(1):45-59, 2013 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
MR-based Attenuation Correction Methods for Improved PET Quantification in Lesions within Bone and Susceptibility Artifact Regions

Bezrukov, I., Schmidt, H., Mantlik, F., Schwenzer, N., Brendle, C., Schölkopf, B., Pichler, B.

Journal of Nuclear Medicine, 54(10):1768-1774, 2013 (article)

Abstract
Hybrid PET/MR systems have recently entered clinical practice. Thus, the accuracy of MR-based attenuation correction in simultaneously acquired data can now be investigated. We assessed the accuracy of 4 methods of MR-based attenuation correction in lesions within soft tissue, bone, and MR susceptibility artifacts: 2 segmentation-based methods (SEG1, provided by the manufacturer, and SEG2, a method with atlas-based susceptibility artifact correction); an atlas- and pattern recognition–based method (AT&PR), which also used artifact correction; and a new method combining AT&PR and SEG2 (SEG2wBONE). Methods: Attenuation maps were calculated for the PET/MR datasets of 10 patients acquired on a whole-body PET/MR system, allowing for simultaneous acquisition of PET and MR data. Eighty percent iso-contour volumes of interest were placed on lesions in soft tissue (n = 21), in bone (n = 20), near bone (n = 19), and within or near MR susceptibility artifacts (n = 9). Relative mean volume-of-interest differences were calculated with CT-based attenuation correction as a reference. Results: For soft-tissue lesions, none of the methods revealed a significant difference in PET standardized uptake value relative to CT-based attenuation correction (SEG1, −2.6% ± 5.8%; SEG2, −1.6% ± 4.9%; AT&PR, −4.7% ± 6.5%; SEG2wBONE, 0.2% ± 5.3%). For bone lesions, underestimation of PET standardized uptake values was found for all methods, with minimized error for the atlas-based approaches (SEG1, −16.1% ± 9.7%; SEG2, −11.0% ± 6.7%; AT&PR, −6.6% ± 5.0%; SEG2wBONE, −4.7% ± 4.4%). For lesions near bone, underestimations of lower magnitude were observed (SEG1, −12.0% ± 7.4%; SEG2, −9.2% ± 6.5%; AT&PR, −4.6% ± 7.8%; SEG2wBONE, −4.2% ± 6.2%). For lesions affected by MR susceptibility artifacts, quantification errors could be reduced using the atlas-based artifact correction (SEG1, −54.0% ± 38.4%; SEG2, −15.0% ± 12.2%; AT&PR, −4.1% ± 11.2%; SEG2wBONE, 0.6% ± 11.1%). Conclusion: For soft-tissue lesions, none of the evaluated methods showed statistically significant errors. For bone lesions, significant underestimations of −16% and −11% occurred for methods in which bone tissue was ignored (SEG1 and SEG2). In the present attenuation correction schemes, uncorrected MR susceptibility artifacts typically result in reduced attenuation values, potentially leading to highly reduced PET standardized uptake values, rendering lesions indistinguishable from background. While AT&PR and SEG2wBONE show accurate results in both soft tissue and bone, SEG2wBONE uses a two-step approach for tissue classification, which increases the robustness of prediction and can be applied retrospectively if more precision in bone areas is needed.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Learning output kernels for multi-task problems

Dinuzzo, F.

Neurocomputing, 118, pages: 119-126, 2013 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Analytical probabilistic modeling for radiation therapy treatment planning

Bangert, M., Hennig, P., Oelfke, U.

Physics in Medicine and Biology, 58(16):5401-5419, 2013 (article)

ei pn

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Imaging Findings and Therapy Response Monitoring in Chronic Sclerodermatous Graft-Versus-Host Disease: Preliminary Data of a Simultaneous PET/MRI Approach

Sauter, A., Schmidt, H., Mantlik, F., Kolb, A., Federmann, B., Pfannenberg, C., Reimold, M., Pichler, B., Bethge, W., Horger, M.

Clinical Nuclear Medicine, 38(8):e309-e317, 2013 (article)

Abstract
PURPOSE: Our objective was a multifunctional imaging approach of chronic sclerodermatous graft-versus-host disease (ScGVHD) and its course during therapy using PET/MRI. METHODS: We performed partial-body PET/CT and PET/MRI of the calf in 6 consecutively recruited patients presenting with severe ScGVHD. The patients were treated with different immunosuppressive regimens and supportive therapies. PET/CT scanning started 60.5 +/- 3.3 minutes, PET/MRI imaging 139.5 +/- 16.7 minutes after F-FDG application. MRI acquisition included T1- (precontrast and postcontrast) and T2-weighted sequences. SUVmean, T1 contrast enhancement, and T2 signal intensity from region-of-interest analysis were calculated for different fascial and muscular compartments. In addition, musculoskeletal MRI findings and the modified Rodnan skin score were assessed. All patients underwent imaging follow-up. RESULTS: At baseline PET/MRI, ScGVHD-related musculoskeletal abnormalities consisted of increased signal and/or thickening of involved anatomical structures on T2-weighted and T1 postcontrast images as well as an increased FDG uptake. At follow-up, ScGVHD-related imaging findings decreased (SUVmean n = 4, mean T1 contrast enhancement n = 5, mean T2 signal intensity n = 3) or progressed (SUVmean n = 3, mean T1 contrast enhancement n = 2, mean T2 signal intensity n = 4). Clinically modified Rodnan skin score improved for 5 follow-ups and progressed for 2. SUVmean values correlated between PET/CT and PET/MRI acquisition (r = 0.660, P = 0.014), T1 contrast enhancement, and T2 signal (r = 0.668, P = 0.012), but not between the SUVmean values and the MRI parameters. CONCLUSIONS: PET/MRI as a combined morphological and functional technique seems to assess the inflammatory processes from different points of view and provides therefore in part complementary information

ei

Web [BibTex]

Web [BibTex]