ei
Mastakouri, A., Schölkopf, B., Janzing, D.
Selecting causal brain features with a single conditional independence test per feature
Advances in Neural Information Processing Systems 32, 33rd Annual Conference on Neural Information Processing Systems, December 2019 (conference) Accepted
ei
Ozdenizci, O., Meyer, T., Wichmann, F., Peters, J., Schölkopf, B., Cetin, M., Grosse-Wentrup, M.
Neural Signatures of Motor Skill in the Resting Brain
Proceedings of the IEEE International Conference on Systems, Man and Cybernetics (SMC 2019), October 2019 (conference) Accepted
ei
Gebhard, T., Kilbertus, N., Harry, I., Schölkopf, B.
Convolutional neural networks: A magic bullet for gravitational-wave detection?
Physical Review D, 100(6):063015, American Physical Society, September 2019 (article)
ei
Babbar, R., Schölkopf, B.
Data scarcity, robustness and extreme multi-label classification
Machine Learning, 108(8):1329-1351, September 2019, Special Issue of the ECML PKDD 2019 Journal Track (article)
ei
Mastakouri, A., Schölkopf, B., Grosse-Wentrup, M.
Beta Power May Mediate the Effect of Gamma-TACS on Motor Performance
Engineering in Medicine and Biology Conference (EMBC), July 2019 (conference) Accepted
ei
Geiger, P., Besserve, M., Winkelmann, J., Proissl, C., Schölkopf, B.
Coordinating Users of Shared Facilities via Data-driven Predictive Assistants and Game Theory
Proceedings of the 35th Conference on Uncertainty in Artificial Intelligence (UAI), pages: 49, (Editors: Amir Globerson and Ricardo Silva), AUAI Press, July 2019 (conference)
ei
Kilbertus, N., Ball, P. J., Kusner, M. J., Weller, A., Silva, R.
The Sensitivity of Counterfactual Fairness to Unmeasured Confounding
Proceedings of the 35th Conference on Uncertainty in Artificial Intelligence (UAI), pages: 213, (Editors: Amir Globerson and Ricardo Silva), AUAI Press, July 2019 (conference)
ei
Gresele*, L., Rubenstein*, P. K., Mehrjou, A., Locatello, F., Schölkopf, B.
The Incomplete Rosetta Stone problem: Identifiability results for Multi-view Nonlinear ICA
Proceedings of the 35th Conference on Uncertainty in Artificial Intelligence (UAI), pages: 53, (Editors: Amir Globerson and Ricardo Silva), AUAI Press, July 2019, *equal contribution (conference)
ei
Peharz, R., Vergari, A., Stelzner, K., Molina, A., Shao, X., Trapp, M., Kersting, K., Ghahramani, Z.
Random Sum-Product Networks: A Simple and Effective Approach to Probabilistic Deep Learning
Proceedings of the 35th Conference on Uncertainty in Artificial Intelligence (UAI), pages: 124, (Editors: Amir Globerson and Ricardo Silva), AUAI Press, July 2019 (conference)
ei
Jitkrittum*, W., Sangkloy*, P., Gondal, M. W., Raj, A., Hays, J., Schölkopf, B.
Kernel Mean Matching for Content Addressability of GANs
Proceedings of the 36th International Conference on Machine Learning (ICML), 97, pages: 3140-3151, Proceedings of Machine Learning Research, (Editors: Chaudhuri, Kamalika and Salakhutdinov, Ruslan), PMLR, June 2019, *equal contribution (conference)
ei
Locatello, F., Bauer, S., Lucic, M., Raetsch, G., Gelly, S., Schölkopf, B., Bachem, O.
Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations
Proceedings of the 36th International Conference on Machine Learning (ICML), 97, pages: 4114-4124, Proceedings of Machine Learning Research, (Editors: Chaudhuri, Kamalika and Salakhutdinov, Ruslan), PMLR, June 2019 (conference)
ei
ps
Zhang, Y., Tang, S., Muandet, K., Jarvers, C., Neumann, H.
Local Temporal Bilinear Pooling for Fine-grained Action Parsing
In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 2019, June 2019 (inproceedings)
ei
Jitkrittum*, W., Sangkloy*, P., Gondal, M. W., Raj, A., Hays, J., Schölkopf, B.
Generate Semantically Similar Images with Kernel Mean Matching
6th Workshop Women in Computer Vision (WiCV) (oral presentation), June 2019, *equal contribution (conference) Accepted
ei
Akrour, R., Pajarinen, J., Peters, J., Neumann, G.
Projections for Approximate Policy Iteration Algorithms
Proceedings of the 36th International Conference on Machine Learning (ICML), 97, pages: 181-190, Proceedings of Machine Learning Research, (Editors: Chaudhuri, Kamalika and Salakhutdinov, Ruslan), PMLR, June 2019 (conference)
ei
Becker-Ehmck, P., Peters, J., van der Smagt, P.
Switching Linear Dynamics for Variational Bayes Filtering
Proceedings of the 36th International Conference on Machine Learning (ICML), 97, pages: 553-562, Proceedings of Machine Learning Research, (Editors: Chaudhuri, Kamalika and Salakhutdinov, Ruslan), PMLR, June 2019 (conference)
ei
Suter, R., Miladinovic, D., Schölkopf, B., Bauer, S.
Robustly Disentangled Causal Mechanisms: Validating Deep Representations for Interventional Robustness
Proceedings of the 36th International Conference on Machine Learning (ICML), 97, pages: 6056-6065, Proceedings of Machine Learning Research, (Editors: Chaudhuri, Kamalika and Salakhutdinov, Ruslan), PMLR, June 2019 (conference)
ei
Simon-Gabriel, C., Ollivier, Y., Bottou, L., Schölkopf, B., Lopez-Paz, D.
First-Order Adversarial Vulnerability of Neural Networks and Input Dimension
Proceedings of the 36th International Conference on Machine Learning (ICML), 97, pages: 5809-5817, Proceedings of Machine Learning Research, (Editors: Chaudhuri, Kamalika and Salakhutdinov, Ruslan), PMLR, June 2019 (conference)
ei
Ialongo, A. D., Van Der Wilk, M., Hensman, J., Rasmussen, C. E.
Overcoming Mean-Field Approximations in Recurrent Gaussian Process Models
In Proceedings of the 36th International Conference on Machine Learning (ICML), 97, pages: 2931-2940, Proceedings of Machine Learning Research, (Editors: Chaudhuri, Kamalika and Salakhutdinov, Ruslan), PMLR, June 2019 (inproceedings)
ei
Gordon, J., Bronskill, J., Bauer, M., Nowozin, S., Turner, R.
Meta learning variational inference for prediction
7th International Conference on Learning Representations (ICLR), May 2019 (conference)
ei
Lutter, M., Ritter, C., Peters, J.
Deep Lagrangian Networks: Using Physics as Model Prior for Deep Learning
7th International Conference on Learning Representations (ICLR), May 2019 (conference)
ei
pn
Schneider, F., Balles, L., Hennig, P.
DeepOBS: A Deep Learning Optimizer Benchmark Suite
7th International Conference on Learning Representations (ICLR), May 2019 (conference)
ei
Miladinović*, D., Gondal*, M. W., Schölkopf, B., Buhmann, J. M., Bauer, S.
Disentangled State Space Models: Unsupervised Learning of Dynamics across Heterogeneous Environments
Deep Generative Models for Highly Structured Data Workshop at ICLR, May 2019, *equal contribution (conference)
ei
Fortuin, V., Hüser, M., Locatello, F., Strathmann, H., Rätsch, G.
SOM-VAE: Interpretable Discrete Representation Learning on Time Series
7th International Conference on Learning Representations (ICLR), May 2019 (conference)
ei
Bauer, M., Mnih, A.
Resampled Priors for Variational Autoencoders
22nd International Conference on Artificial Intelligence and Statistics, April 2019 (conference) Accepted
ei
von Kügelgen, J., Mey, A., Loog, M.
Semi-Generative Modelling: Covariate-Shift Adaptation with Cause and Effect Features
Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics (AISTATS), 89, pages: 1361-1369, (Editors: Kamalika Chaudhuri and Masashi Sugiyama), PMLR, April 2019 (conference)
ei
Mroueh, Y., Sercu, T., Raj, A.
Sobolev Descent
Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics (AISTATS), 89, pages: 2976-2985, (Editors: Kamalika Chaudhuri and Masashi Sugiyama), PMLR, April 2019 (conference)
ei
pn
Arvanitidis, G., Hauberg, S., Hennig, P., Schober, M.
Fast and Robust Shortest Paths on Manifolds Learned from Data
Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics (AISTATS), 89, pages: 1506-1515, (Editors: Kamalika Chaudhuri and Masashi Sugiyama), PMLR, April 2019 (conference)
pn
ei
de Roos, F., Hennig, P.
Active Probabilistic Inference on Matrices for Pre-Conditioning in Stochastic Optimization
Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics (AISTATS), 89, pages: 1448-1457, (Editors: Kamalika Chaudhuri and Masashi Sugiyama), PMLR, April 2019 (conference)
ei
Wenk, P., Gotovos, A., Bauer, S., Gorbach, N., Krause, A., Buhmann, J. M.
Fast Gaussian Process Based Gradient Matching for Parameter Identification in Systems of Nonlinear ODEs
Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics (AISTATS), 89, pages: 1351-1360, (Editors: Kamalika Chaudhuri and Masashi Sugiyama), PMLR, April 2019 (conference)
ei
Aghaeifar, A., Zhou, J., Heule, R., Tabibian, B., Schölkopf, B., Jia, F., Zaitsev, M., Scheffler, K.
A 32-channel multi-coil setup optimized for human brain shimming at 9.4T
Magnetic Resonance in Medicine, 2019, (Early View) (article)
ei
Lim, J. N., Yamada, M., Jitkrittum, W., Terada, Y., Matsui, S., Shimodaira, H.
More Powerful Selective Kernel Tests for Feature Selection
2019 (misc) Submitted
ei
Stimper, V., Bauer, S., Ernstorfer, R., Schölkopf, B., Xian, R. P.
Multidimensional Contrast Limited Adaptive Histogram Equalization
IEEE Access, 7, pages: 165437-165447, 2019 (article)
ei
Tabibian, B., Upadhyay, U., De, A., Zarezade, A., Schölkopf, B., Gomez Rodriguez, M.
Enhancing Human Learning via Spaced Repetition Optimization
Proceedings of the National Academy of Sciences, 2019, PNAS published ahead of print January 22, 2019 (article)
ei
Mehrjou, A., Jitkrittum, W., Schölkopf, B., Muandet, K.
Witnessing Adversarial Training in Reproducing Kernel Hilbert Spaces
2019 (conference) Submitted
ei
Büchler, D., Calandra, R., Peters, J.
Learning to Control Highly Accelerated Ballistic Movements on Muscular Robots
2019 (article) Submitted
ei
Abbati*, G., Wenk*, P., Osborne, M. A., Krause, A., Schölkopf, B., Bauer, S.
AReS and MaRS Adversarial and MMD-Minimizing Regression for SDEs
Proceedings of the 36th International Conference on Machine Learning (ICML), 97, pages: 1-10, Proceedings of Machine Learning Research, (Editors: Chaudhuri, Kamalika and Salakhutdinov, Ruslan), PMLR, 2019, *equal contribution (conference)
ei
Park, M., Jitkrittum, W.
ABCDP: Approximate Bayesian Computation Meets Differential Privacy
2019 (misc) Submitted
ei
Runge, J., Bathiany, S., Bollt, E., Camps-Valls, G., Coumou, D., Deyle, E., Glymour, C., Kretschmer, M., Mahecha, M., van Nes, E., Peters, J., Quax, R., Reichstein, M., Scheffer, M. S. B., Spirtes, P., Sugihara, G., Sun, J., Zhang, K., Zscheischler, J.
Inferring causation from time series with perspectives in Earth system sciences
Nature Communications, 2019 (article) In revision
ei
Lim, J. N., Yamada, M., Schölkopf, B., Jitkrittum, W.
Kernel Stein Tests for Multiple Model Comparison
Advances in Neural Information Processing Systems 32, 33rd Annual Conference on Neural Information Processing Systems, 2019 (conference) To be published
ei
Hohmann, M. R., Hackl, M., Wirth, B., Zaman, T., Enficiaud, R., Grosse-Wentrup, M., Schölkopf, B.
MYND: A Platform for Large-scale Neuroscientific Studies
Proceedings of the 2019 Conference on Human Factors in Computing Systems (CHI), 2019 (conference) Accepted
ei
Kanagawa, H., Jitkrittum, W., Mackey, L., Fukumizu, K., Gretton, A.
A Kernel Stein Test for Comparing Latent Variable Models
2019 (conference) Submitted
ei
Gomez-Gonzalez, S., Nemmour, Y., Schölkopf, B., Peters, J.
Reliable Real-Time Ball Tracking for Robot Table Tennis
Robotics, 8(4):90, 2019 (article)
mg
Yeganegi, M. H., Khadiv, M., Moosavian, S. A. A., Zhu, J., Prete, A. D., Righetti, L.
Robust Humanoid Locomotion Using Trajectory Optimization and Sample-Efficient Learning
Proceedings International Conference on Humanoid Robots, IEEE, 2019 IEEE-RAS International Conference on Humanoid Robots, 2019 (conference)
ei
ps
Ghosh*, P., Sajjadi*, M. S. M., Vergari, A., Black, M. J., Schölkopf, B.
From Variational to Deterministic Autoencoders
2019, *equal contribution (conference) Submitted
ei
Koc, O., Maeda, G., Peters, J.
Optimizing the Execution of Dynamic Robot Movements With Learning Control
IEEE Transactions on Robotics, pages: 1-16, 2019 (article)
ei
Koc, O., Peters, J.
Learning to Serve: An Experimental Study for a New Learning From Demonstrations Framework
IEEE Robotics and Automation Letters, 4(2):1784-1791, 2019 (article)
ei
Liu, S., Kanamori, T., Jitkrittum, W., Chen, Y.
Fisher Efficient Inference of Intractable Models
Advances in Neural Information Processing Systems 32, 33rd Annual Conference on Neural Information Processing Systems, 2019 (conference) To be published
ei
Klus, S., Schuster, I., Muandet, K.
Eigendecompositions of Transfer Operators in Reproducing Kernel Hilbert Spaces
Journal of Nonlinear Science, 2019, First Online: 21 August 2019 (article)
ei
Ialongo, A. D., Van Der Wilk, M., Hensman, J., Rasmussen, C. E.
Non-factorised Variational Inference in Dynamical Systems
1st Symposion on Advances in Approximate Bayesian Inference, December 2018 (conference)