Header logo is


2020


no image
Algorithmic recourse under imperfect causal knowledge: a probabilistic approach

Karimi*, A., von Kügelgen*, J., Schölkopf, B., Valera, I.

Advances in Neural Information Processing Systems 33, 34th Annual Conference on Neural Information Processing Systems, December 2020, *equal contribution (conference) Accepted

ei

arXiv [BibTex]

2020


arXiv [BibTex]


Grasping Field: Learning Implicit Representations for Human Grasps
Grasping Field: Learning Implicit Representations for Human Grasps

Karunratanakul, K., Yang, J., Zhang, Y., Black, M., Muandet, K., Tang, S.

In International Conference on 3D Vision (3DV), November 2020 (inproceedings)

Abstract
Robotic grasping of house-hold objects has made remarkable progress in recent years. Yet, human grasps are still difficult to synthesize realistically. There are several key reasons: (1) the human hand has many degrees of freedom (more than robotic manipulators); (2) the synthesized hand should conform to the surface of the object; and (3) it should interact with the object in a semantically and physically plausible manner. To make progress in this direction, we draw inspiration from the recent progress on learning-based implicit representations for 3D object reconstruction. Specifically, we propose an expressive representation for human grasp modelling that is efficient and easy to integrate with deep neural networks. Our insight is that every point in a three-dimensional space can be characterized by the signed distances to the surface of the hand and the object, respectively. Consequently, the hand, the object, and the contact area can be represented by implicit surfaces in a common space, in which the proximity between the hand and the object can be modelled explicitly. We name this 3D to 2D mapping as Grasping Field, parameterize it with a deep neural network, and learn it from data. We demonstrate that the proposed grasping field is an effective and expressive representation for human grasp generation. Specifically, our generative model is able to synthesize high-quality human grasps, given only on a 3D object point cloud. The extensive experiments demonstrate that our generative model compares favorably with a strong baseline and approaches the level of natural human grasps. Furthermore, based on the grasping field representation, we propose a deep network for the challenging task of 3D hand-object interaction reconstruction from a single RGB image. Our method improves the physical plausibility of the hand-object contact reconstruction and achieves comparable performance for 3D hand reconstruction compared to state-of-the-art methods. Our model and code are available for research purpose at https://github.com/korrawe/grasping_field.

ei ps

pdf arXiv code [BibTex]


{GIF}: Generative Interpretable Faces
GIF: Generative Interpretable Faces

Ghosh, P., Gupta, P. S., Uziel, R., Ranjan, A., Black, M. J., Bolkart, T.

In International Conference on 3D Vision (3DV), November 2020 (inproceedings)

Abstract
Photo-realistic visualization and animation of expressive human faces have been a long standing challenge. 3D face modeling methods provide parametric control but generates unrealistic images, on the other hand, generative 2D models like GANs (Generative Adversarial Networks) output photo-realistic face images, but lack explicit control. Recent methods gain partial control, either by attempting to disentangle different factors in an unsupervised manner, or by adding control post hoc to a pre-trained model. Unconditional GANs, however, may entangle factors that are hard to undo later. We condition our generative model on pre-defined control parameters to encourage disentanglement in the generation process. Specifically, we condition StyleGAN2 on FLAME, a generative 3D face model. While conditioning on FLAME parameters yields unsatisfactory results, we find that conditioning on rendered FLAME geometry and photometric details works well. This gives us a generative 2D face model named GIF (Generative Interpretable Faces) that offers FLAME's parametric control. Here, interpretable refers to the semantic meaning of different parameters. Given FLAME parameters for shape, pose, expressions, parameters for appearance, lighting, and an additional style vector, GIF outputs photo-realistic face images. We perform an AMT based perceptual study to quantitatively and qualitatively evaluate how well GIF follows its conditioning. The code, data, and trained model are publicly available for research purposes at http://gif.is.tue.mpg.de

ps

pdf project code [BibTex]

pdf project code [BibTex]


{PLACE}: Proximity Learning of Articulation and Contact in {3D} Environments
PLACE: Proximity Learning of Articulation and Contact in 3D Environments

Zhang, S., Zhang, Y., Ma, Q., Black, M. J., Tang, S.

In International Conference on 3D Vision (3DV), November 2020 (inproceedings)

Abstract
High fidelity digital 3D environments have been proposed in recent years, however, it remains extremely challenging to automatically equip such environment with realistic human bodies. Existing work utilizes images, depth or semantic maps to represent the scene, and parametric human models to represent 3D bodies. While being straight-forward, their generated human-scene interactions often lack of naturalness and physical plausibility. Our key observation is that humans interact with the world through body-scene contact. To synthesize realistic human-scene interactions, it is essential to effectively represent the physical contact and proximity between the body and the world. To that end, we propose a novel interaction generation method, named PLACE(Proximity Learning of Articulation and Contact in 3D Environments), which explicitly models the proximity between the human body and the 3D scene around it. Specifically, given a set of basis points on a scene mesh, we leverage a conditional variational autoencoder to synthesize the minimum distances from the basis points to the human body surface. The generated proximal relationship exhibits which region of the scene is in contact with the person. Furthermore, based on such synthesized proximity, we are able to effectively obtain expressive 3D human bodies that interact with the 3D scene naturally. Our perceptual study shows that PLACE significantly improves the state-of-the-art method, approaching the realism of real human-scene interaction. We believe our method makes an important step towards the fully automatic synthesis of realistic 3D human bodies in 3D scenes. The code and model are available for research at https://sanweiliti.github.io/PLACE/PLACE.html

ps

pdf arXiv project code [BibTex]

pdf arXiv project code [BibTex]


no image
MYND: Unsupervised Evaluation of Novel BCI Control Strategies on Consumer Hardware

Hohmann, M. R., Konieczny, L., Hackl, M., Wirth, B., Zaman, T., Enficiaud, R., Grosse-Wentrup, M., Schölkopf, B.

Proceedings of the 33rd Annual ACM Symposium on User Interface Software and Technology (UIST), October 2020 (conference) Accepted

ei

arXiv DOI [BibTex]

arXiv DOI [BibTex]


Learning a statistical full spine model from partial observations
Learning a statistical full spine model from partial observations

Meng, D., Keller, M., Boyer, E., Black, M., Pujades, S.

In Shape in Medical Imaging, pages: 122,133, (Editors: Reuter, Martin and Wachinger, Christian and Lombaert, Hervé and Paniagua, Beatriz and Goksel, Orcun and Rekik, Islem), Springer International Publishing, October 2020 (inproceedings)

Abstract
The study of the morphology of the human spine has attracted research attention for its many potential applications, such as image segmentation, bio-mechanics or pathology detection. However, as of today there is no publicly available statistical model of the 3D surface of the full spine. This is mainly due to the lack of openly available 3D data where the full spine is imaged and segmented. In this paper we propose to learn a statistical surface model of the full-spine (7 cervical, 12 thoracic and 5 lumbar vertebrae) from partial and incomplete views of the spine. In order to deal with the partial observations we use probabilistic principal component analysis (PPCA) to learn a surface shape model of the full spine. Quantitative evaluation demonstrates that the obtained model faithfully captures the shape of the population in a low dimensional space and generalizes to left out data. Furthermore, we show that the model faithfully captures the global correlations among the vertebrae shape. Given a partial observation of the spine, i.e. a few vertebrae, the model can predict the shape of unseen vertebrae with a mean error under 3 mm. The full-spine statistical model is trained on the VerSe 2019 public dataset and is publicly made available to the community for non-commercial purposes. (https://gitlab.inria.fr/spine/spine_model)

ps

Gitlab Code PDF DOI [BibTex]

Gitlab Code PDF DOI [BibTex]


no image
Model-Agnostic Counterfactual Explanations for Consequential Decisions

Karimi, A., Barthe, G., Balle, B., Valera, I.

Proceedings of the 23rd International Conference on Artificial Intelligence and Statistics (AISTATS), 108, pages: 895-905, Proceedings of Machine Learning Research, (Editors: Silvia Chiappa and Roberto Calandra), PMLR, August 2020 (conference)

ei plg

arXiv link (url) [BibTex]

arXiv link (url) [BibTex]


no image
More Powerful Selective Kernel Tests for Feature Selection

Lim, J. N., Yamada, M., Jitkrittum, W., Terada, Y., Matsui, S., Shimodaira, H.

Proceedings of the 23rd International Conference on Artificial Intelligence and Statistics (AISTATS), 108, pages: 820-830, Proceedings of Machine Learning Research, (Editors: Silvia Chiappa and Roberto Calandra), PMLR, August 2020 (conference)

ei

arXiv link (url) [BibTex]

arXiv link (url) [BibTex]


no image
Bayesian Online Prediction of Change Points

Agudelo-España, D., Gomez-Gonzalez, S., Bauer, S., Schölkopf, B., Peters, J.

Proceedings of the 36th International Conference on Uncertainty in Artificial Intelligence (UAI), 124, pages: 320-329, Proceedings of Machine Learning Research, (Editors: Jonas Peters and David Sontag), PMLR, August 2020 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Semi-supervised learning, causality, and the conditional cluster assumption

von Kügelgen, J., Mey, A., Loog, M., Schölkopf, B.

Proceedings of the 36th International Conference on Uncertainty in Artificial Intelligence (UAI) , 124, pages: 1-10, Proceedings of Machine Learning Research, (Editors: Jonas Peters and David Sontag), PMLR, August 2020 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Kernel Conditional Moment Test via Maximum Moment Restriction

Muandet, K., Jitkrittum, W., Kübler, J. M.

Proceedings of the 36th International Conference on Uncertainty in Artificial Intelligence (UAI), 124, pages: 41-50, Proceedings of Machine Learning Research, (Editors: Jonas Peters and David Sontag), PMLR, August 2020 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
On the design of consequential ranking algorithms

Tabibian, B., Gómez, V., De, A., Schölkopf, B., Gomez Rodriguez, M.

Proceedings of the 36th International Conference on Uncertainty in Artificial Intelligence (UAI), 124, pages: 171-180, Proceedings of Machine Learning Research, (Editors: Jonas Peters and David Sontag), PMLR, August 2020 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Importance Sampling via Local Sensitivity

Raj, A., Musco, C., Mackey, L.

Proceedings of the 23rd International Conference on Artificial Intelligence and Statistics (AISTATS), 108, pages: 3099-3109, Proceedings of Machine Learning Research, (Editors: Silvia Chiappa and Roberto Calandra), PMLR, August 2020 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
A Continuous-time Perspective for Modeling Acceleration in Riemannian Optimization

F Alimisis, F., Orvieto, A., Becigneul, G., Lucchi, A.

Proceedings of the 23rd International Conference on Artificial Intelligence and Statistics (AISTATS), 108, pages: 1297-1307, Proceedings of Machine Learning Research, (Editors: Silvia Chiappa and Roberto Calandra), PMLR, August 2020 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Fair Decisions Despite Imperfect Predictions

Kilbertus, N., Gomez Rodriguez, M., Schölkopf, B., Muandet, K., Valera, I.

Proceedings of the 23rd International Conference on Artificial Intelligence and Statistics (AISTATS), 108, pages: 277-287, Proceedings of Machine Learning Research, (Editors: Silvia Chiappa and Roberto Calandra), PMLR, August 2020 (conference)

ei plg

link (url) [BibTex]

link (url) [BibTex]


no image
Integrals over Gaussians under Linear Domain Constraints

Gessner, A., Kanjilal, O., Hennig, P.

Proceedings of the 23rd International Conference on Artificial Intelligence and Statistics (AISTATS), 108, pages: 2764-2774, Proceedings of Machine Learning Research, (Editors: Silvia Chiappa and Roberto Calandra), PMLR, August 2020 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


STAR: Sparse Trained Articulated Human Body Regressor
STAR: Sparse Trained Articulated Human Body Regressor

Osman, A. A. A., Bolkart, T., Black, M. J.

In European Conference on Computer Vision (ECCV) , August 2020 (inproceedings)

Abstract
The SMPL body model is widely used for the estimation, synthesis, and analysis of 3D human pose and shape. While popular, we show that SMPL has several limitations and introduce STAR, which is quantitatively and qualitatively superior to SMPL. First, SMPL has a huge number of parameters resulting from its use of global blend shapes. These dense pose-corrective offsets relate every vertex on the mesh to all the joints in the kinematic tree, capturing spurious long-range correlations. To address this, we define per-joint pose correctives and learn the subset of mesh vertices that are influenced by each joint movement. This sparse formulation results in more realistic deformations and significantly reduces the number of model parameters to 20% of SMPL. When trained on the same data as SMPL, STAR generalizes better despite having many fewer parameters. Second, SMPL factors pose-dependent deformations from body shape while, in reality, people with different shapes deform differently. Consequently, we learn shape-dependent pose-corrective blend shapes that depend on both body pose and BMI. Third, we show that the shape space of SMPL is not rich enough to capture the variation in the human population. We address this by training STAR with an additional 10,000 scans of male and female subjects, and show that this results in better model generalization. STAR is compact, generalizes better to new bodies and is a drop-in replacement for SMPL. STAR is publicly available for research purposes at http://star.is.tue.mpg.de.

ps

Project Page Code Video paper supplemental [BibTex]


Monocular Expressive Body Regression through Body-Driven Attention
Monocular Expressive Body Regression through Body-Driven Attention

Choutas, V., Pavlakos, G., Bolkart, T., Tzionas, D., Black, M. J.

In Computer Vision – ECCV 2020, Springer International Publishing, Cham, August 2020 (inproceedings)

Abstract
To understand how people look, interact, or perform tasks,we need to quickly and accurately capture their 3D body, face, and hands together from an RGB image. Most existing methods focus only on parts of the body. A few recent approaches reconstruct full expressive 3D humans from images using 3D body models that include the face and hands. These methods are optimization-based and thus slow, prone to local optima, and require 2D keypoints as input. We address these limitations by introducing ExPose (EXpressive POse and Shape rEgression), which directly regresses the body, face, and hands, in SMPL-X format, from an RGB image. This is a hard problem due to the high dimensionality of the body and the lack of expressive training data. Additionally, hands and faces are much smaller than the body, occupying very few image pixels. This makes hand and face estimation hard when body images are downscaled for neural networks. We make three main contributions. First, we account for the lack of training data by curating a dataset of SMPL-X fits on in-the-wild images. Second, we observe that body estimation localizes the face and hands reasonably well. We introduce body-driven attention for face and hand regions in the original image to extract higher-resolution crops that are fed to dedicated refinement modules. Third, these modules exploit part-specific knowledge from existing face and hand-only datasets. ExPose estimates expressive 3D humans more accurately than existing optimization methods at a small fraction of the computational cost. Our data, model and code are available for research at https://expose.is.tue.mpg.de.

ps

code Short video Long video arxiv pdf suppl link (url) Project Page [BibTex]


no image
Modular Block-diagonal Curvature Approximations for Feedforward Architectures

Dangel, F., Harmeling, S., Hennig, P.

Proceedings of the 23rd International Conference on Artificial Intelligence and Statistics (AISTATS), 108, pages: 799-808, Proceedings of Machine Learning Research, (Editors: Silvia Chiappa and Roberto Calandra), PMLR, August 2020 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


GRAB: A Dataset of Whole-Body Human Grasping of Objects
GRAB: A Dataset of Whole-Body Human Grasping of Objects

Taheri, O., Ghorbani, N., Black, M. J., Tzionas, D.

In Computer Vision – ECCV 2020, Springer International Publishing, Cham, August 2020 (inproceedings)

Abstract
Training computers to understand, model, and synthesize human grasping requires a rich dataset containing complex 3D object shapes, detailed contact information, hand pose and shape, and the 3D body motion over time. While "grasping" is commonly thought of as a single hand stably lifting an object, we capture the motion of the entire body and adopt the generalized notion of "whole-body grasps". Thus, we collect a new dataset, called GRAB (GRasping Actions with Bodies), of whole-body grasps, containing full 3D shape and pose sequences of 10 subjects interacting with 51 everyday objects of varying shape and size. Given MoCap markers, we fit the full 3D body shape and pose, including the articulated face and hands, as well as the 3D object pose. This gives detailed 3D meshes over time, from which we compute contact between the body and object. This is a unique dataset, that goes well beyond existing ones for modeling and understanding how humans grasp and manipulate objects, how their full body is involved, and how interaction varies with the task. We illustrate the practical value of GRAB with an example application; we train GrabNet, a conditional generative network, to predict 3D hand grasps for unseen 3D object shapes. The dataset and code are available for research purposes at https://grab.is.tue.mpg.de.

ps

pdf suppl video (long) video (short) link (url) DOI [BibTex]

pdf suppl video (long) video (short) link (url) DOI [BibTex]


no image
Testing Goodness of Fit of Conditional Density Models with Kernels

Jitkrittum, W., Kanagawa, H., Schölkopf, B.

Proceedings of the 36th International Conference on Uncertainty in Artificial Intelligence (UAI), 124, pages: 221-230, Proceedings of Machine Learning Research, (Editors: Jonas Peters and David Sontag), PMLR, August 2020 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Stochastic Frank-Wolfe for Constrained Finite-Sum Minimization

Negiar, G., Dresdner, G., Tsai, A. Y., El Ghaoui, L., Locatello, F., Freund, R. M., Pedregosa, F.

37th International Conference on Machine Learning (ICML), pages: 296-305, July 2020 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Variational Autoencoders with Riemannian Brownian Motion Priors

Kalatzis, D., Eklund, D., Arvanitidis, G., Hauberg, S.

37th International Conference on Machine Learning (ICML), pages: 6789-6799, July 2020 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Variational Bayes in Private Settings (VIPS) (Extended Abstract)

Foulds, J. R., Park, M., Chaudhuri, K., Welling, M.

Proceedings of the 29th International Joint Conference on Artificial Intelligence, (IJCAI-PRICAI), pages: 5050-5054, (Editors: Christian Bessiere), International Joint Conferences on Artificial Intelligence Organization, July 2020, Journal track (conference)

ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Weakly-Supervised Disentanglement Without Compromises

Locatello, F., Poole, B., Rätsch, G., Schölkopf, B., Bachem, O., Tschannen, M.

37th International Conference on Machine Learning (ICML), pages: 7753-7764, July 2020 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Constant Curvature Graph Convolutional Networks

Bachmann*, G., Becigneul*, G., Ganea, O.

37th International Conference on Machine Learning (ICML), pages: 9118-9128, July 2020, *equal contribution (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Being Bayesian, Even Just a Bit, Fixes Overconfidence in ReLU Networks

Kristiadi, A., Hein, M., Hennig, P.

37th International Conference on Machine Learning (ICML), pages: 1226-1236, July 2020 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Differentiable Likelihoods for Fast Inversion of ‘Likelihood-Free’ Dynamical Systems

Kersting, H., Krämer, N., Schiegg, M., Daniel, C., Tiemann, M., Hennig, P.

37th International Conference on Machine Learning (ICML), pages: 2655-2665, July 2020 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


Learning to Dress 3D People in Generative Clothing
Learning to Dress 3D People in Generative Clothing

Ma, Q., Yang, J., Ranjan, A., Pujades, S., Pons-Moll, G., Tang, S., Black, M. J.

In Computer Vision and Pattern Recognition (CVPR), pages: 6468-6477, IEEE, June 2020 (inproceedings)

Abstract
Three-dimensional human body models are widely used in the analysis of human pose and motion. Existing models, however, are learned from minimally-clothed 3D scans and thus do not generalize to the complexity of dressed people in common images and videos. Additionally, current models lack the expressive power needed to represent the complex non-linear geometry of pose-dependent clothing shape. To address this, we learn a generative 3D mesh model of clothed people from 3D scans with varying pose and clothing. Specifically, we train a conditional Mesh-VAE-GAN to learn the clothing deformation from the SMPL body model, making clothing an additional term on SMPL. Our model is conditioned on both pose and clothing type, giving the ability to draw samples of clothing to dress different body shapes in a variety of styles and poses. To preserve wrinkle detail, our Mesh-VAE-GAN extends patchwise discriminators to 3D meshes. Our model, named CAPE, represents global shape and fine local structure, effectively extending the SMPL body model to clothing. To our knowledge, this is the first generative model that directly dresses 3D human body meshes and generalizes to different poses.

ps

Project page Code Short video Long video arXiv DOI [BibTex]

Project page Code Short video Long video arXiv DOI [BibTex]


{GENTEL : GENerating Training data Efficiently for Learning to segment medical images}
GENTEL : GENerating Training data Efficiently for Learning to segment medical images

Thakur, R. P., Rocamora, S. P., Goel, L., Pohmann, R., Machann, J., Black, M. J.

Congrès Reconnaissance des Formes, Image, Apprentissage et Perception (RFAIP), June 2020 (conference)

Abstract
Accurately segmenting MRI images is crucial for many clinical applications. However, manually segmenting images with accurate pixel precision is a tedious and time consuming task. In this paper we present a simple, yet effective method to improve the efficiency of the image segmentation process. We propose to transform the image annotation task into a binary choice task. We start by using classical image processing algorithms with different parameter values to generate multiple, different segmentation masks for each input MRI image. Then, instead of segmenting the pixels of the images, the user only needs to decide whether a segmentation is acceptable or not. This method allows us to efficiently obtain high quality segmentations with minor human intervention. With the selected segmentations, we train a state-of-the-art neural network model. For the evaluation, we use a second MRI dataset (1.5T Dataset), acquired with a different protocol and containing annotations. We show that the trained network i) is able to automatically segment cases where none of the classical methods obtain a high quality result ; ii) generalizes to the second MRI dataset, which was acquired with a different protocol and was never seen at training time ; and iii) enables detection of miss-annotations in this second dataset. Quantitatively, the trained network obtains very good results: DICE score - mean 0.98, median 0.99- and Hausdorff distance (in pixels) - mean 4.7, median 2.0-.

ps

Project Page PDF [BibTex]

Project Page PDF [BibTex]


Generating 3D People in Scenes without People
Generating 3D People in Scenes without People

Zhang, Y., Hassan, M., Neumann, H., Black, M. J., Tang, S.

In Computer Vision and Pattern Recognition (CVPR), pages: 6194-6204, June 2020 (inproceedings)

Abstract
We present a fully automatic system that takes a 3D scene and generates plausible 3D human bodies that are posed naturally in that 3D scene. Given a 3D scene without people, humans can easily imagine how people could interact with the scene and the objects in it. However, this is a challenging task for a computer as solving it requires that (1) the generated human bodies to be semantically plausible within the 3D environment (e.g. people sitting on the sofa or cooking near the stove), and (2) the generated human-scene interaction to be physically feasible such that the human body and scene do not interpenetrate while, at the same time, body-scene contact supports physical interactions. To that end, we make use of the surface-based 3D human model SMPL-X. We first train a conditional variational autoencoder to predict semantically plausible 3D human poses conditioned on latent scene representations, then we further refine the generated 3D bodies using scene constraints to enforce feasible physical interaction. We show that our approach is able to synthesize realistic and expressive 3D human bodies that naturally interact with 3D environment. We perform extensive experiments demonstrating that our generative framework compares favorably with existing methods, both qualitatively and quantitatively. We believe that our scene-conditioned 3D human generation pipeline will be useful for numerous applications; e.g. to generate training data for human pose estimation, in video games and in VR/AR. Our project page for data and code can be seen at: \url{https://vlg.inf.ethz.ch/projects/PSI/}.

ps

Code PDF DOI [BibTex]

Code PDF DOI [BibTex]


no image
Kernel Conditional Density Operators

Schuster, I., Mollenhauer, M., Klus, S., Muandet, K.

Proceedings of the 23rd International Conference on Artificial Intelligence and Statistics (AISTATS), 108, pages: 993-1004, Proceedings of Machine Learning Research, (Editors: Silvia Chiappa and Roberto Calandra), PMLR, June 2020 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


Learning Physics-guided Face Relighting under Directional Light
Learning Physics-guided Face Relighting under Directional Light

Nestmeyer, T., Lalonde, J., Matthews, I., Lehrmann, A. M.

In Conference on Computer Vision and Pattern Recognition, pages: 5123-5132, IEEE/CVF, June 2020 (inproceedings) Accepted

Abstract
Relighting is an essential step in realistically transferring objects from a captured image into another environment. For example, authentic telepresence in Augmented Reality requires faces to be displayed and relit consistent with the observer's scene lighting. We investigate end-to-end deep learning architectures that both de-light and relight an image of a human face. Our model decomposes the input image into intrinsic components according to a diffuse physics-based image formation model. We enable non-diffuse effects including cast shadows and specular highlights by predicting a residual correction to the diffuse render. To train and evaluate our model, we collected a portrait database of 21 subjects with various expressions and poses. Each sample is captured in a controlled light stage setup with 32 individual light sources. Our method creates precise and believable relighting results and generalizes to complex illumination conditions and challenging poses, including when the subject is not looking straight at the camera.

ps

Paper [BibTex]

Paper [BibTex]


no image
A Kernel Mean Embedding Approach to Reducing Conservativeness in Stochastic Programming and Control

Zhu, J., Diehl, M., Schölkopf, B.

2nd Annual Conference on Learning for Dynamics and Control (L4DC), 120, pages: 915-923, Proceedings of Machine Learning Research, (Editors: Alexandre M. Bayen and Ali Jadbabaie and George Pappas and Pablo A. Parrilo and Benjamin Recht and Claire Tomlin and Melanie Zeilinger), PMLR, June 2020 (conference)

ei

arXiv link (url) [BibTex]

arXiv link (url) [BibTex]


{VIBE}: Video Inference for Human Body Pose and Shape Estimation
VIBE: Video Inference for Human Body Pose and Shape Estimation

Kocabas, M., Athanasiou, N., Black, M. J.

In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pages: 5252-5262, IEEE, IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 2020, June 2020 (inproceedings)

Abstract
Human motion is fundamental to understanding behavior. Despite progress on single-image 3D pose and shape estimation, existing video-based state-of-the-art methodsfail to produce accurate and natural motion sequences due to a lack of ground-truth 3D motion data for training. To address this problem, we propose “Video Inference for Body Pose and Shape Estimation” (VIBE), which makes use of an existing large-scale motion capture dataset (AMASS) together with unpaired, in-the-wild, 2D keypoint annotations. Our key novelty is an adversarial learning framework that leverages AMASS to discriminate between real human motions and those produced by our temporal pose and shape regression networks. We define a temporal network architecture and show that adversarial training, at the sequence level, produces kinematically plausible motion sequences without in-the-wild ground-truth 3D labels. We perform extensive experimentation to analyze the importance of motion and demonstrate the effectiveness of VIBE on challenging 3D pose estimation datasets, achieving state-of-the-art performance. Code and pretrained models are available at https://github.com/mkocabas/VIBE

ps

arXiv code video supplemental video DOI Project Page [BibTex]

arXiv code video supplemental video DOI Project Page [BibTex]


no image
Disentangling Factors of Variations Using Few Labels

Locatello, F., Tschannen, M., Bauer, S., Rätsch, G., Schölkopf, B., Bachem, O.

8th International Conference on Learning Representations (ICLR), April 2020 (conference)

ei

arXiv link (url) [BibTex]

arXiv link (url) [BibTex]


no image
Mixed-curvature Variational Autoencoders

Skopek, O., Ganea, O., Becigneul, G.

8th International Conference on Learning Representations (ICLR), April 2020 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


Non-linear interlinkages and key objectives amongst the Paris Agreement and the Sustainable Development Goals
Non-linear interlinkages and key objectives amongst the Paris Agreement and the Sustainable Development Goals

Laumann, F., von Kügelgen, J., Barahona, M.

ICLR 2020 Workshop "Tackling Climate Change with Machine Learning", April 2020 (conference)

ei

arXiv PDF [BibTex]

arXiv PDF [BibTex]


no image
Counterfactuals uncover the modular structure of deep generative models

Besserve, M., Mehrjou, A., Sun, R., Schölkopf, B.

8th International Conference on Learning Representations (ICLR), April 2020 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


Towards causal generative scene models via competition of experts
Towards causal generative scene models via competition of experts

von Kügelgen*, J., Ustyuzhaninov*, I., Gehler, P., Bethge, M., Schölkopf, B.

ICLR 2020 Workshop "Causal Learning for Decision Making", April 2020, *equal contribution (conference)

ei

arXiv PDF [BibTex]

arXiv PDF [BibTex]


no image
On Mutual Information Maximization for Representation Learning

Tschannen, M., Djolonga, J., Rubenstein, P. K., Gelly, S., Lucic, M.

8th International Conference on Learning Representations (ICLR), April 2020 (conference)

ei

arXiv link (url) [BibTex]

arXiv link (url) [BibTex]


From Variational to Deterministic Autoencoders
From Variational to Deterministic Autoencoders

Ghosh*, P., Sajjadi*, M. S. M., Vergari, A., Black, M. J., Schölkopf, B.

8th International Conference on Learning Representations (ICLR) , April 2020, *equal contribution (conference)

Abstract
Variational Autoencoders (VAEs) provide a theoretically-backed framework for deep generative models. However, they often produce “blurry” images, which is linked to their training objective. Sampling in the most popular implementation, the Gaussian VAE, can be interpreted as simply injecting noise to the input of a deterministic decoder. In practice, this simply enforces a smooth latent space structure. We challenge the adoption of the full VAE framework on this specific point in favor of a simpler, deterministic one. Specifically, we investigate how substituting stochasticity with other explicit and implicit regularization schemes can lead to a meaningful latent space without having to force it to conform to an arbitrarily chosen prior. To retrieve a generative mechanism for sampling new data points, we propose to employ an efficient ex-post density estimation step that can be readily adopted both for the proposed deterministic autoencoders as well as to improve sample quality of existing VAEs. We show in a rigorous empirical study that regularized deterministic autoencoding achieves state-of-the-art sample quality on the common MNIST, CIFAR-10 and CelebA datasets.

ei ps

arXiv link (url) [BibTex]

arXiv link (url) [BibTex]


Attractiveness and Confidence in Walking Style of Male and Female Virtual Characters
Attractiveness and Confidence in Walking Style of Male and Female Virtual Characters

Thaler, A., Bieg, A., Mahmood, N., Black, M. J., Mohler, B. J., Troje, N. F.

In IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW), pages: 678-679, March 2020 (inproceedings)

Abstract
Animated virtual characters are essential to many applications. Little is known so far about biological and personality inferences made from a virtual character’s body shape and motion. Here, we investigated how sex-specific differences in walking style relate to the perceived attractiveness and confidence of male and female virtual characters. The characters were generated by reconstructing body shape and walking motion from optical motion capture data. The results suggest that sexual dimorphism in walking style plays a different role in attributing biological and personality traits to male and female virtual characters. This finding has important implications for virtual character animation.

ps

pdf DOI [BibTex]

pdf DOI [BibTex]


no image
Radial and Directional Posteriors for Bayesian Deep Learning

Oh, C., Adamczewski, K., Park, M.

Proceedings of the 34th Conference on Artificial Intelligence (AAAI), 34(4):5298-5305, AAAI Press, Febuary 2020, AAAI Technical Track: Machine Learning (conference)

ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Chained Representation Cycling: Learning to Estimate 3D Human Pose and Shape by Cycling Between Representations
Chained Representation Cycling: Learning to Estimate 3D Human Pose and Shape by Cycling Between Representations

Rueegg, N., Lassner, C., Black, M. J., Schindler, K.

In Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20), pages: 5561-5569, Febuary 2020 (inproceedings)

Abstract
The goal of many computer vision systems is to transform image pixels into 3D representations. Recent popular models use neural networks to regress directly from pixels to 3D object parameters. Such an approach works well when supervision is available, but in problems like human pose and shape estimation, it is difficult to obtain natural images with 3D ground truth. To go one step further, we propose a new architecture that facilitates unsupervised, or lightly supervised, learning. The idea is to break the problem into a series of transformations between increasingly abstract representations. Each step involves a cycle designed to be learnable without annotated training data, and the chain of cycles delivers the final solution. Specifically, we use 2D body part segments as an intermediate representation that contains enough information to be lifted to 3D, and at the same time is simple enough to be learned in an unsupervised way. We demonstrate the method by learning 3D human pose and shape from un-paired and un-annotated images. We also explore varying amounts of paired data and show that cycling greatly alleviates the need for paired data. While we present results for modeling humans, our formulation is general and can be applied to other vision problems.

ps

pdf [BibTex]

pdf [BibTex]


no image
ODIN: ODE-Informed Regression for Parameter and State Inference in Time-Continuous Dynamical Systems

Wenk, P., Abbati, G., Osborne, M. A., Schölkopf, B., Krause, A., Bauer, S.

Proceedings of the 34th Conference on Artificial Intelligence (AAAI), 34(4):6364-6371, AAAI Press, Febuary 2020, AAAI Technical Track: Machine Learning (conference)

ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Interpretable and Differentially Private Predictions

Harder, F., Bauer, M., Park, M.

Proceedings of the 34th Conference on Artificial Intelligence (AAAI), 34(4):4083-4090, AAAI Press, Febuary 2020, AAAI Technical Track: Machine Learning (conference)

ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]