Header logo is


2001


no image
Perception of Planar Shapes in Depth

Wichmann, F., Willems, B., Rosas, P., Wagemans, J.

Journal of Vision, 1(3):176, First Annual Meeting of the Vision Sciences Society (VSS), December 2001 (poster)

Abstract
We investigated the influence of the perceived 3D-orientation of planar elliptical shapes on the perception of the shapes themselves. Ellipses were projected onto the surface of a sphere and subjects were asked to indicate if the projected shapes looked as if they were a circle on the surface of the sphere. The image of the sphere was obtained from a real, (near) perfect sphere using a highly accurate digital camera (real sphere diameter 40 cm; camera-to-sphere distance 320 cm; for details see Willems et al., Perception 29, S96, 2000; Photometrics SenSys 400 digital camera with Rodenstock lens, 12-bit linear luminance resolution). Stimuli were presented monocularly on a carefully linearized Sony GDM-F500 monitor keeping the scene geometry as in the real case (sphere diameter on screen 8.2 cm; viewing distance 66 cm). Experiments were run in a darkened room using a viewing tube to minimize, as far as possible, extraneous monocular cues to depth. Three different methods were used to obtain subjects' estimates of 3D-shape: the method of adjustment, temporal 2-alternative forced choice (2AFC) and yes/no. Several results are noteworthy. First, mismatch between perceived and objective slant tended to decrease with increasing objective slant. Second, the variability of the settings, too, decreased with increasing objective slant. Finally, we comment on the results obtained using different psychophysical methods and compare our results to those obtained using a real sphere and binocular vision (Willems et al.).

ei

Web DOI [BibTex]

2001


Web DOI [BibTex]


no image
Anabolic and Catabolic Gene Expression Pattern Analysis in Normal Versus Osteoarthritic Cartilage Using Complementary DNA-Array Technology

Aigner, T., Zien, A., Gehrsitz, A., Gebhard, P., McKenna, L.

Arthritis and Rheumatism, 44(12):2777-2789, December 2001 (article)

ei

Web [BibTex]

Web [BibTex]


no image
Generalization performance of regularization networks and support vector machines via entropy numbers of compact operators

Williamson, R., Smola, A., Schölkopf, B.

IEEE Transactions on Information Theory, 47(6):2516-2532, September 2001 (article)

Abstract
We derive new bounds for the generalization error of kernel machines, such as support vector machines and related regularization networks by obtaining new bounds on their covering numbers. The proofs make use of a viewpoint that is apparently novel in the field of statistical learning theory. The hypothesis class is described in terms of a linear operator mapping from a possibly infinite-dimensional unit ball in feature space into a finite-dimensional space. The covering numbers of the class are then determined via the entropy numbers of the operator. These numbers, which characterize the degree of compactness of the operator can be bounded in terms of the eigenvalues of an integral operator induced by the kernel function used by the machine. As a consequence, we are able to theoretically explain the effect of the choice of kernel function on the generalization performance of support vector machines.

ei

DOI [BibTex]

DOI [BibTex]


no image
Centralization: A new method for the normalization of gene expression data

Zien, A., Aigner, T., Zimmer, R., Lengauer, T.

Bioinformatics, 17, pages: S323-S331, June 2001, Mathematical supplement available at http://citeseer.ist.psu.edu/574280.html (article)

Abstract
Microarrays measure values that are approximately proportional to the numbers of copies of different mRNA molecules in samples. Due to technical difficulties, the constant of proportionality between the measured intensities and the numbers of mRNA copies per cell is unknown and may vary for different arrays. Usually, the data are normalized (i.e., array-wise multiplied by appropriate factors) in order to compensate for this effect and to enable informative comparisons between different experiments. Centralization is a new two-step method for the computation of such normalization factors that is both biologically better motivated and more robust than standard approaches. First, for each pair of arrays the quotient of the constants of proportionality is estimated. Second, from the resulting matrix of pairwise quotients an optimally consistent scaling of the samples is computed.

ei

PDF PostScript Web [BibTex]

PDF PostScript Web [BibTex]


no image
Regularized principal manifolds

Smola, A., Mika, S., Schölkopf, B., Williamson, R.

Journal of Machine Learning Research, 1, pages: 179-209, June 2001 (article)

Abstract
Many settings of unsupervised learning can be viewed as quantization problems - the minimization of the expected quantization error subject to some restrictions. This allows the use of tools such as regularization from the theory of (supervised) risk minimization for unsupervised learning. This setting turns out to be closely related to principal curves, the generative topographic map, and robust coding. We explore this connection in two ways: (1) we propose an algorithm for finding principal manifolds that can be regularized in a variety of ways; and (2) we derive uniform convergence bounds and hence bounds on the learning rates of the algorithm. In particular, we give bounds on the covering numbers which allows us to obtain nearly optimal learning rates for certain types of regularization operators. Experimental results demonstrate the feasibility of the approach.

ei

PDF [BibTex]

PDF [BibTex]


no image
Failure Diagnosis of Discrete Event Systems

Son, HI., Kim, KW., Lee, S.

Journal of Control, Automation and Systems Engineering, 7(5):375-383, May 2001, In Korean (article)

ei

[BibTex]

[BibTex]


no image
Plaid maskers revisited: asymmetric plaids

Wichmann, F.

pages: 57, 4. T{\"u}binger Wahrnehmungskonferenz (TWK), March 2001 (poster)

Abstract
A large number of psychophysical and physiological experiments suggest that luminance patterns are independently analysed in channels responding to different bands of spatial frequency. There are, however, interactions among stimuli falling well outside the usual estimates of channels' bandwidths. Derrington & Henning (1989) first reported that, in 2-AFC sinusoidal-grating detection, plaid maskers, whose components are oriented symmetrically about the signal orientation, cause a substantially larger threshold elevation than would be predicted from their sinusoidal constituents alone. Wichmann & Tollin (1997a,b) and Wichmann & Henning (1998) confirmed and extended the original findings, measuring masking as a function of presentation time and plaid mask contrast. Here I investigate masking using plaid patterns whose components are asymmetrically positioned about the signal orientation. Standard temporal 2-AFC pattern discrimination experiments were conducted using plaid patterns and oblique sinusoidal gratings as maskers, and horizontally orientated sinusoidal gratings as signals. Signal and maskers were always interleaved on the display (refresh rate 152 Hz). As in the case of the symmetrical plaid maskers, substantial masking was observed for many of the asymmetrical plaids. Masking is neither a straightforward function of the plaid's constituent sinusoidal components nor of the periodicity of the luminance beats between components. These results cause problems for the notion that, even for simple stimuli, detection and discrimination are based on the outputs of channels tuned to limited ranges of spatial frequency and orientation, even if a limited set of nonlinear interactions between these channels is allowed.

ei

Web [BibTex]

Web [BibTex]


no image
Pattern Selection Using the Bias and Variance of Ensemble

Shin, H., Cho, S.

Journal of the Korean Institute of Industrial Engineers, 28(1):112-127, March 2001 (article)

Abstract
[Abstract]: A useful pattern is a pattern that contributes much to learning. For a classification problem those patterns near the class boundary surfaces carry more information to the classifier. For a regression problem the ones near the estimated surface carry more information. In both cases, the usefulness is defined only for those patterns either without error or with negligible error. Using only the useful patterns gives several benefits. First, computational complexity in memory and time for learning is decreased. Second, overfitting is avoided even when the learner is over-sized. Third, learning results in more stable learners. In this paper, we propose a pattern “utility index” that measures the utility of an individual pattern. The utility index is based on the bias and variance of a pattern trained by a network ensemble. In classification, the pattern with a low bias and a high variance gets a high score. In regression, on the other hand, the one with a low bias and a low variance gets a high score. Based on the distribution of the utility index, the original training set is divided into a high-score group and a low-score group. Only the high-score group is then used for training. The proposed method is tested on synthetic and real-world benchmark datasets. The proposed approach gives a better or at least similar performance.

ei

[BibTex]

[BibTex]


no image
Structure and Functionality of a Designed p53 Dimer.

Davison, TS., Nie, X., Ma, W., Lin, Y., Kay, C., Benchimol, S., Arrowsmith, C.

Journal of Molecular Biology, 307(2):605-617, March 2001 (article)

Abstract
P53 is a homotetrameric tumor suppressor protein involved in transcriptional control of genes that regulate cell proliferation and death. In order to probe the role that oligomerization plays in this capacity, we have previously designed and characterized a series of p53 proteins with altered oligomeric states through hydrophilc substitution of residues Met340 or Leu344 in the normally tetrameric oligomerization domain. Although such mutations have little effect on the overall secondary structural content of the oligomerization domain, both solubility and the resistance to thermal denaturation are substantially reduced relative to that of the wild-type domain. Here, we report the design and characterization of a double-mutant p53 with alterations of residues at positions Met340 and Leu344. The double-mutations Met340Glu/Leu344Lys and Met340Gln/Leu344Arg resulted in distinct dimeric forms of the protein. Furthermore, we have verified by NMR structure determination that the double-mutant Met340Gln/Leu344Arg is essentially a "half-tetramer". Analysis of the in vivo activities of full-length p53 oligomeric mutants reveals that while cell-cycle arrest requires tetrameric p53, transcriptional transactivation activity of monomers and dimers retain roughly background and half of the wild-type activity, respectively.

ei

Web [BibTex]

Web [BibTex]


no image
An Introduction to Kernel-Based Learning Algorithms

Müller, K., Mika, S., Rätsch, G., Tsuda, K., Schölkopf, B.

IEEE Transactions on Neural Networks, 12(2):181-201, March 2001 (article)

Abstract
This paper provides an introduction to support vector machines, kernel Fisher discriminant analysis, and kernel principal component analysis, as examples for successful kernel-based learning methods. We first give a short background about Vapnik-Chervonenkis theory and kernel feature spaces and then proceed to kernel based learning in supervised and unsupervised scenarios including practical and algorithmic considerations. We illustrate the usefulness of kernel algorithms by discussing applications such as optical character recognition and DNA analysis

ei

DOI [BibTex]

DOI [BibTex]


no image
Estimating the support of a high-dimensional distribution.

Schölkopf, B., Platt, J., Shawe-Taylor, J., Smola, A., Williamson, R.

Neural Computation, 13(7):1443-1471, March 2001 (article)

Abstract
Suppose you are given some data set drawn from an underlying probability distribution P and you want to estimate a “simple” subset S of input space such that the probability that a test point drawn from P lies outside of S equals some a priori specified value between 0 and 1. We propose a method to approach this problem by trying to estimate a function f that is positive on S and negative on the complement. The functional form of f is given by a kernel expansion in terms of a potentially small subset of the training data; it is regularized by controlling the length of the weight vector in an associated feature space. The expansion coefficients are found by solving a quadratic programming problem, which we do by carrying out sequential optimization over pairs of input patterns. We also provide a theoretical analysis of the statistical performance of our algorithm. The algorithm is a natural extension of the support vector algorithm to the case of unlabeled data.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
The psychometric function: II. Bootstrap-based confidence intervals and sampling

Wichmann, F., Hill, N.

Perception and Psychophysics, 63 (8), pages: 1314-1329, 2001 (article)

ei

PDF [BibTex]

PDF [BibTex]


no image
The psychometric function: I. Fitting, sampling and goodness-of-fit

Wichmann, F., Hill, N.

Perception and Psychophysics, 63 (8), pages: 1293-1313, 2001 (article)

Abstract
The psychometric function relates an observer'sperformance to an independent variable, usually some physical quantity of a stimulus in a psychophysical task. This paper, together with its companion paper (Wichmann & Hill, 2001), describes an integrated approach to (1) fitting psychometric functions, (2) assessing the goodness of fit, and (3) providing confidence intervals for the function'sparameters and other estimates derived from them, for the purposes of hypothesis testing. The present paper deals with the first two topics, describing a constrained maximum-likelihood method of parameter estimation and developing several goodness-of-fit tests. Using Monte Carlo simulations, we deal with two specific difficulties that arise when fitting functions to psychophysical data. First, we note that human observers are prone to stimulus-independent errors (or lapses ). We show that failure to account for this can lead to serious biases in estimates of the psychometric function'sparameters and illustrate how the problem may be overcome. Second, we note that psychophysical data sets are usually rather small by the standards required by most of the commonly applied statistical tests. We demonstrate the potential errors of applying traditional X^2 methods to psychophysical data and advocate use of Monte Carlo resampling techniques that do not rely on asymptotic theory. We have made available the software to implement our methods

ei

PDF [BibTex]

PDF [BibTex]


no image
The pedestal effect with a pulse train and its constituent sinusoids

Henning, G., Wichmann, F., Bird, C.

Twenty-Sixth Annual Interdisciplinary Conference, 2001 (poster)

Abstract
Curves showing "threshold" contrast for detecting a signal grating as a function of the contrast of a masking grating of the same orientation, spatial frequency, and phase show a characteristic improvement in performance at masker contrasts near the contrast threshold of the unmasked signal. Depending on the percentage of correct responses used to define the threshold, the best performance can be as much as a factor of three better than the unmasked threshold obtained in the absence of any masking grating. The result is called the pedestal effect (sometimes, the dipper function). We used a 2AFC procedure to measure the effect with harmonically related sinusoids ranging from 2 to 16 c/deg - all with maskers of the same orientation, spatial frequency and phase - and with masker contrasts ranging from 0 to 50%. The curves for different spatial frequencies are identical if both the vertical axis (showing the threshold signal contrast) and the horizontal axis (showing the masker contrast) are scaled by the threshold contrast of the signal obtained with no masker. Further, a pulse train with a fundamental frequency of 2 c/deg produces a curve that is indistinguishable from that of a 2-c/deg sinusoid despite the fact that at higher masker contrasts, the pulse train contains at least 8 components all of them equally detectable. The effect of adding 1-D spatial noise is also discussed.

ei

[BibTex]

[BibTex]


no image
The control structure of artificial creatures

Zhou, D., Dai, R.

Artificial Life and Robotics, 5(3), 2001, invited article (article)

ei

Web [BibTex]

Web [BibTex]


no image
Markovian domain fingerprinting: statistical segmentation of protein sequences

Bejerano, G., Seldin, Y., Margalit, H., Tishby, N.

Bioinformatics, 17(10):927-934, 2001 (article)

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Modeling the Dynamics of Individual Neurons of the Stomatogastric Networks with Support Vector Machines

Frontzek, T., Gutzen, C., Lal, TN., Heinzel, H-G., Eckmiller, R., Böhm, H.

Abstract Proceedings of the 6th International Congress of Neuroethology (ICN'2001) Bonn, abstract 404, 2001 (poster)

Abstract
In small rhythmic active networks timing of individual neurons is crucial for generating different spatial-temporal motor patterns. Switching of one neuron between different rhythms can cause transition between behavioral modes. In order to understand the dynamics of rhythmically active neurons we analyzed the oscillatory membranpotential of a pacemaker neuron and used different neural network models to predict dynamics of its time series. In a first step we have trained conventional RBF networks and Support Vector Machines (SVMs) using gaussian kernels with intracellulary recordings of the pyloric dilatator neuron in the Australian crayfish, Cherax destructor albidus. As a rule SVMs were able to learn the nonlinear dynamics of pyloric neurons faster (e.g. 15s) than RBF networks (e.g. 309s) under the same hardware conditions. After training SVMs performed a better iterated one-step-ahead prediction of time series in the pyloric dilatator neuron with regard to test error and error sum. The test error decreased with increasing number of support vectors. The best SVM used 196 support vectors and produced a test error of 0.04622 as opposed to the best RBF with 0.07295 using 26 RBF-neurons. In pacemaker neuron PD the timepoint at which the membranpotential will cross threshold for generation of its oscillatory peak is most important for determination of the test error. Interestingly SVMs are especially better in predicting this important part of the membranpotential which is superimposed by various synaptic inputs, which drive the membranpotential to its threshold.

ei

[BibTex]

[BibTex]