ei
Abdolmaleki, A., Lau, N., Reis, L., Peters, J., Neumann, G.
Contextual Policy Search for Linear and Nonlinear Generalization of a Humanoid Walking Controller
Journal of Intelligent & Robotic Systems, 83(3-4):393-408, (Editors: Luis Almeida, Lino Marques ), September 2016, Special Issue: Autonomous Robot Systems (article)
ei
Maeda, G., Ewerton, M., Koert, D., Peters, J.
Acquiring and Generalizing the Embodiment Mapping from Human Observations to Robot Skills
IEEE Robotics and Automation Letters, 1(2):784-791, July 2016 (article)
ei
Zhang, K., Wang, Z., Zhang, J., Schölkopf, B.
On estimation of functional causal models: General results and application to post-nonlinear causal model
ACM Transactions on Intelligent Systems and Technologies, 7(2):article no. 13, January 2016 (article)
ei
pn
Klenske, E. D., Zeilinger, M., Schölkopf, B., Hennig, P.
Gaussian Process-Based Predictive Control for Periodic Error Correction
IEEE Transactions on Control Systems Technology , 24(1):110-121, 2016 (article)
ei
Townsend, J., Koep, N., Weichwald, S.
Pymanopt: A Python Toolbox for Optimization on Manifolds using Automatic Differentiation
Journal of Machine Learning Research, 17(137):1-5, 2016 (article)
ei
Wang, D., Hogg, D. W., Foreman-Mackey, D., Schölkopf, B.
A Causal, Data-driven Approach to Modeling the Kepler Data
Publications of the Astronomical Society of the Pacific, 128(967):094503, 2016 (article)
am
ei
Daniel, C., van Hoof, H., Peters, J., Neumann, G.
Probabilistic Inference for Determining Options in Reinforcement Learning
Machine Learning, Special Issue, 104(2):337-357, (Editors: Gärtner, T., Nanni, M., Passerini, A. and Robardet, C.), European Conference on Machine Learning im Machine Learning, Journal Track, 2016, Best Student Paper Award of ECML-PKDD 2016 (article)
ei
Rothkegel, L. O. M., Trukenbrod, H. A., Schütt, H. H., Wichmann, F. A., Engbert, R.
Influence of initial fixation position in scene viewing
Vision Research, 129, pages: 33-49, 2016 (article)
ei
Wallis, T. S. A., Bethge, M., Wichmann, F. A.
Testing models of peripheral encoding using metamerism in an oddity paradigm
Journal of Vision, 16(2), 2016 (article)
ei
Schölkopf, B., Hogg, D., Wang, D., Foreman-Mackey, D., Janzing, D., Simon-Gabriel, C. J., Peters, J.
Modeling Confounding by Half-Sibling Regression
Proceedings of the National Academy of Science, 113(27):7391-7398, 2016 (article)
ei
pn
Klenske, E. D., Hennig, P.
Dual Control for Approximate Bayesian Reinforcement Learning
Journal of Machine Learning Research, 17(127):1-30, 2016 (article)
ei
Divine, M. R., Katiyar, P., Kohlhofer, U., Quintanilla-Martinez, L., Disselhorst, J. A., Pichler, B. J.
A Population Based Gaussian Mixture Model Incorporating 18F-FDG-PET and DW-MRI Quantifies Tumor Tissue Classes
Journal of Nuclear Medicine, 57(3):473-479, 2016 (article)
ei
Seith, F., Gatidis, S., Schmidt, H., Bezrukov, I., la Fougère, C., Nikolaou, K., Pfannenberg, C., Schwenzer, N.
Comparison of Positron Emission Tomography Quantification Using Magnetic Resonance–and Computed Tomography–Based Attenuation Correction in Physiological Tissues and Lesions: A Whole-Body Positron Emission Tomography/Magnetic Resonance Study in 66 Patients
Investigative Radiology, 51(1):66-71, 2016 (article)
ei
Gomez Rodriguez, M., Song, L., Daneshmand, H., Schölkopf, B.
Estimating Diffusion Networks: Recovery Conditions, Sample Complexity and Soft-thresholding Algorithm
Journal of Machine Learning Research, 17(90):1-29, 2016 (article)
ei
Schütt, H. H., Harmeling, S., Macke, J. H., Wichmann, F. A.
Painfree and accurate Bayesian estimation of psychometric functions for (potentially) overdispersed data
Vision Research, 122, pages: 105-123, 2016 (article)
ei
Grosse-Wentrup, M., Janzing, D., Siegel, M., Schölkopf, B.
Identification of causal relations in neuroimaging data with latent confounders: An instrumental variable approach
NeuroImage, 125, pages: 825-833, 2016 (article)
ei
Köhler, R.
Advances in computational imaging: Benchmarking Deblurring Algorithms, Deep Neural Inpainting, Depth Estimation from Light Fields
Eberhard Karls Universität Tübingen, Germany, 2016 (phdthesis)
ei
Daniel, C., Neumann, G., Kroemer, O., Peters, J.
Hierarchical Relative Entropy Policy Search
Journal of Machine Learning Research, 17(93):1-50, 2016 (article)
ei
Kiefel, M.
Tractable Structured Prediction using the Permutohedral Lattice
ETH Zurich, 2016 (phdthesis)
ei
Muandet, K., Sriperumbudur, B., Fukumizu, K., Gretton, A., Schölkopf, B.
Kernel Mean Shrinkage Estimators
Journal of Machine Learning Research, 17(48):1-41, 2016 (article)
ei
Schuler, C. J., Hirsch, M., Harmeling, S., Schölkopf, B.
Learning to Deblur
IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(7):1439-1451, IEEE, 2016 (article)
ei
Jayaram, V., Alamgir, M., Altun, Y., Schölkopf, B., Grosse-Wentrup, M.
Transfer Learning in Brain-Computer Interfaces
IEEE Computational Intelligence Magazine, 11(1):20-31, 2016 (article)
ei
Weichwald, S., Grosse-Wentrup, M., Gretton, A.
MERLiN: Mixture Effect Recovery in Linear Networks
IEEE Journal of Selected Topics in Signal Processing, 10(7):1254-1266, 2016 (article)
ei
Peters, J., Bühlmann, P., Meinshausen, N.
Causal inference using invariant prediction: identification and confidence intervals
Journal of the Royal Statistical Society, Series B (Statistical Methodology), 78(5):947-1012, 2016, (with discussion) (article)
ei
Spirtes, P., Zhang, K.
Causal discovery and inference: concepts and recent methodological advances
Applied Informatics, 3(3):1-28, 2016 (article)
ei
Fomina, T., Lohmann, G., Erb, M., Ethofer, T., Schölkopf, B., Grosse-Wentrup, M.
Self-regulation of brain rhythms in the precuneus: a novel BCI paradigm for patients with ALS
Journal of Neural Engineering, 13(6):066021, 2016 (article)
ei
Gomez-Rodriguez, M., Song, L., Du, N., Zha, H., Schölkopf, B.
Influence Estimation and Maximization in Continuous-Time Diffusion Networks
ACM Transactions on Information Systems, 34(2):9:1-9:33, 2016 (article)
ei
Stimper, V.
Zwischen Harmonie und Chaos - ein verallgemeinertes Modell des Doppelpendels
Junge Wissenschaft, (109), 2016 (article)
ei
Foreman-Mackey, D., Morton, T. D., Hogg, D. W., Agol, E., Schölkopf, B.
The population of long-period transiting exoplanets
The Astronomical Journal, 152(6):206, 2016 (article)
ei
Jäkel, F., Singh, M., Wichmann, F. A., Herzog, M. H.
An overview of quantitative approaches in Gestalt perception
Vision Research, 126, pages: 3-8, 2016 (article)
ei
Huang, H., Peloso, G. M., Howrigan, D., Rakitsch, B., Simon-Gabriel, C. J., Goldstein, J. I., Daly, M. J., Borgwardt, K., Neale, B. M.
Bootstrat: Population Informed Bootstrapping for Rare Variant Tests
bioRxiv, 2016, preprint (article)
ei
Rueckert, E., Camernik, J., Peters, J., Babic, J.
Probabilistic Movement Models Show that Postural Control Precedes and Predicts Volitional Motor Control
Nature PG: Scientific Reports, 6(Article number: 28455), 2016 (article)
ei
Mooij, J., Peters, J., Janzing, D., Zscheischler, J., Schölkopf, B.
Distinguishing cause from effect using observational data: methods and benchmarks
Journal of Machine Learning Research, 17(32):1-102, 2016 (article)
ei
Babbar, R., Partalas, I., Gaussier, E., Amini, M., Amblard, C.
Learning Taxonomy Adaptation in Large-scale Classification
Journal of Machine Learning Research, 17(98):1-37, 2016 (article)
ei
Janzing, D., Chaves, R., Schölkopf, B.
Algorithmic independence of initial condition and dynamical law in thermodynamics and causal inference
New Journal of Phyiscs, 18(9):093052, 2016 (article)
ei
Mohr, J., Seyfarth, J., Lueschow, A., Weber, J. E., Wichmann, F. A., Obermayer, K.
BOiS—Berlin Object in Scene Database: Controlled Photographic Images for Visual Search Experiments with Quantified Contextual Priors
Frontiers in Psychology, 2016 (article)
ei
Zhang, K., Li, J., Bareinboim, E., Schölkopf, B., Pearl, J.
Preface to the ACM TIST Special Issue on Causal Discovery and Inference
ACM Transactions on Intelligent Systems and Technologies, 7(2):article no. 17, 2016 (article)
ei
Rueckert, E., Kappel, D., Tanneberg, D., Pecevski, D., Peters, J.
Recurrent Spiking Networks Solve Planning Tasks
Nature PG: Scientific Reports, 6(Article number: 21142), 2016 (article)
ei
Genewein, T, Braun, DA
Bio-inspired feedback-circuit implementation of discrete, free energy optimizing, winner-take-all computations
Biological Cybernetics, 110(2):135–150, June 2016 (article)
ei
Grau-Moya, J, Ortega, PA, Braun, DA
Decision-Making under Ambiguity Is Modulated by Visual Framing, but Not by Motor vs. Non-Motor Context: Experiments and an Information-Theoretic Ambiguity Model
PLoS ONE, 11(4):1-21, April 2016 (article)
ei
Gretton, A., Herbrich, R., Smola, A., Bousquet, O., Schölkopf, B.
Kernel Methods for Measuring Independence
Journal of Machine Learning Research, 6, pages: 2075-2129, December 2005 (article)
ei
Quinonero Candela, J., Rasmussen, C.
A Unifying View of Sparse Approximate Gaussian Process Regression
Journal of Machine Learning Research, 6, pages: 1935-1959, December 2005 (article)
ei
BakIr, G.
Extension to Kernel Dependency Estimation with Applications to Robotics
Biologische Kybernetik, Technische Universität Berlin, Berlin, November 2005 (phdthesis)
ei
Hein, M.
Geometrical aspects of statistical learning theory
Biologische Kybernetik, Darmstadt, Darmstadt, November 2005 (phdthesis)
ei
Hein, M., Bousquet, O., Schölkopf, B.
Maximal Margin Classification for Metric Spaces
Journal of Computer and System Sciences, 71(3):333-359, October 2005 (article)
ei
Kato, T., Tsuda, K., Asai, K.
Selective integration of multiple biological data for supervised
network inference
Bioinformatics, 21(10):2488 , October 2005 (article)
ei
Kuss, M., Rasmussen, C.
Assessing Approximate Inference for Binary Gaussian Process Classification
Journal of Machine Learning Research, 6, pages: 1679 , October 2005 (article)
ei
Steinke, F.
Implicit Surfaces For Modelling
Human Heads
Biologische Kybernetik, Eberhard-Karls-Universität, Tübingen, September 2005 (diplomathesis)
ei
Banerjee, A., Dhillon, I., Ghosh, J., Sra, S.
Clustering on the Unit Hypersphere using von Mises-Fisher Distributions
Journal of Machine Learning Research, 6, pages: 1345-1382, September 2005 (article)
ei
Steinke, F., Schölkopf, B., Blanz, V.
Support Vector Machines for 3D Shape Processing
Computer Graphics Forum, 24(3, EUROGRAPHICS 2005):285-294, September 2005 (article)