Header logo is


2019


no image
Neural Signatures of Motor Skill in the Resting Brain

Ozdenizci, O., Meyer, T., Wichmann, F., Peters, J., Schölkopf, B., Cetin, M., Grosse-Wentrup, M.

Proceedings of the IEEE International Conference on Systems, Man and Cybernetics (SMC 2019), October 2019 (conference) Accepted

ei

[BibTex]

2019


[BibTex]


no image
Convolutional neural networks: A magic bullet for gravitational-wave detection?

Gebhard, T., Kilbertus, N., Harry, I., Schölkopf, B.

Physical Review D, 100(6):063015, American Physical Society, September 2019 (article)

ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Data scarcity, robustness and extreme multi-label classification

Babbar, R., Schölkopf, B.

Machine Learning, 108(8):1329-1351, September 2019, Special Issue of the ECML PKDD 2019 Journal Track (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Beta Power May Mediate the Effect of Gamma-TACS on Motor Performance

Mastakouri, A., Schölkopf, B., Grosse-Wentrup, M.

Engineering in Medicine and Biology Conference (EMBC), July 2019 (conference) Accepted

ei

arXiv PDF [BibTex]

arXiv PDF [BibTex]


no image
Coordinating Users of Shared Facilities via Data-driven Predictive Assistants and Game Theory

Geiger, P., Besserve, M., Winkelmann, J., Proissl, C., Schölkopf, B.

Proceedings of the 35th Conference on Uncertainty in Artificial Intelligence (UAI), pages: 49, (Editors: Amir Globerson and Ricardo Silva), AUAI Press, July 2019 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
The Sensitivity of Counterfactual Fairness to Unmeasured Confounding

Kilbertus, N., Ball, P. J., Kusner, M. J., Weller, A., Silva, R.

Proceedings of the 35th Conference on Uncertainty in Artificial Intelligence (UAI), pages: 213, (Editors: Amir Globerson and Ricardo Silva), AUAI Press, July 2019 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
The Incomplete Rosetta Stone problem: Identifiability results for Multi-view Nonlinear ICA

Gresele*, L., Rubenstein*, P. K., Mehrjou, A., Locatello, F., Schölkopf, B.

Proceedings of the 35th Conference on Uncertainty in Artificial Intelligence (UAI), pages: 53, (Editors: Amir Globerson and Ricardo Silva), AUAI Press, July 2019, *equal contribution (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Random Sum-Product Networks: A Simple and Effective Approach to Probabilistic Deep Learning

Peharz, R., Vergari, A., Stelzner, K., Molina, A., Shao, X., Trapp, M., Kersting, K., Ghahramani, Z.

Proceedings of the 35th Conference on Uncertainty in Artificial Intelligence (UAI), pages: 124, (Editors: Amir Globerson and Ricardo Silva), AUAI Press, July 2019 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Kernel Mean Matching for Content Addressability of GANs

Jitkrittum*, W., Sangkloy*, P., Gondal, M. W., Raj, A., Hays, J., Schölkopf, B.

Proceedings of the 36th International Conference on Machine Learning (ICML), 97, pages: 3140-3151, Proceedings of Machine Learning Research, (Editors: Chaudhuri, Kamalika and Salakhutdinov, Ruslan), PMLR, June 2019, *equal contribution (conference)

ei

PDF link (url) [BibTex]

PDF link (url) [BibTex]


no image
Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations

Locatello, F., Bauer, S., Lucic, M., Raetsch, G., Gelly, S., Schölkopf, B., Bachem, O.

Proceedings of the 36th International Conference on Machine Learning (ICML), 97, pages: 4114-4124, Proceedings of Machine Learning Research, (Editors: Chaudhuri, Kamalika and Salakhutdinov, Ruslan), PMLR, June 2019 (conference)

ei

PDF link (url) [BibTex]

PDF link (url) [BibTex]


Thumb xl cvpr2019 demo v2.001
Local Temporal Bilinear Pooling for Fine-grained Action Parsing

Zhang, Y., Tang, S., Muandet, K., Jarvers, C., Neumann, H.

In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 2019, June 2019 (inproceedings)

Abstract
Fine-grained temporal action parsing is important in many applications, such as daily activity understanding, human motion analysis, surgical robotics and others requiring subtle and precise operations in a long-term period. In this paper we propose a novel bilinear pooling operation, which is used in intermediate layers of a temporal convolutional encoder-decoder net. In contrast to other work, our proposed bilinear pooling is learnable and hence can capture more complex local statistics than the conventional counterpart. In addition, we introduce exact lower-dimension representations of our bilinear forms, so that the dimensionality is reduced with neither information loss nor extra computation. We perform intensive experiments to quantitatively analyze our model and show the superior performances to other state-of-the-art work on various datasets.

ei ps

Code video demo pdf link (url) [BibTex]

Code video demo pdf link (url) [BibTex]


no image
Generate Semantically Similar Images with Kernel Mean Matching

Jitkrittum*, W., Sangkloy*, P., Gondal, M. W., Raj, A., Hays, J., Schölkopf, B.

6th Workshop Women in Computer Vision (WiCV) (oral presentation), June 2019, *equal contribution (conference) Accepted

ei

[BibTex]

[BibTex]


no image
Robustly Disentangled Causal Mechanisms: Validating Deep Representations for Interventional Robustness

Suter, R., Miladinovic, D., Schölkopf, B., Bauer, S.

Proceedings of the 36th International Conference on Machine Learning (ICML), 97, pages: 6056-6065, Proceedings of Machine Learning Research, (Editors: Chaudhuri, Kamalika and Salakhutdinov, Ruslan), PMLR, June 2019 (conference)

ei

PDF link (url) [BibTex]

PDF link (url) [BibTex]


no image
First-Order Adversarial Vulnerability of Neural Networks and Input Dimension

Simon-Gabriel, C., Ollivier, Y., Bottou, L., Schölkopf, B., Lopez-Paz, D.

Proceedings of the 36th International Conference on Machine Learning (ICML), 97, pages: 5809-5817, Proceedings of Machine Learning Research, (Editors: Chaudhuri, Kamalika and Salakhutdinov, Ruslan), PMLR, June 2019 (conference)

ei

PDF link (url) [BibTex]

PDF link (url) [BibTex]


no image
Overcoming Mean-Field Approximations in Recurrent Gaussian Process Models

Ialongo, A. D., Van Der Wilk, M., Hensman, J., Rasmussen, C. E.

In Proceedings of the 36th International Conference on Machine Learning (ICML), 97, pages: 2931-2940, Proceedings of Machine Learning Research, (Editors: Chaudhuri, Kamalika and Salakhutdinov, Ruslan), PMLR, June 2019 (inproceedings)

ei

PDF link (url) [BibTex]

PDF link (url) [BibTex]


no image
Meta learning variational inference for prediction

Gordon, J., Bronskill, J., Bauer, M., Nowozin, S., Turner, R.

7th International Conference on Learning Representations (ICLR), May 2019 (conference) Accepted

ei

arXiv link (url) [BibTex]

arXiv link (url) [BibTex]


no image
Deep Lagrangian Networks: Using Physics as Model Prior for Deep Learning

Lutter, M., Ritter, C., Peters, J.

7th International Conference on Learning Representations (ICLR), May 2019 (conference) Accepted

ei

link (url) [BibTex]

link (url) [BibTex]


no image
DeepOBS: A Deep Learning Optimizer Benchmark Suite

Schneider, F., Balles, L., Hennig, P.

7th International Conference on Learning Representations (ICLR), May 2019 (conference) Accepted

ei pn

link (url) [BibTex]

link (url) [BibTex]


no image
Disentangled State Space Models: Unsupervised Learning of Dynamics across Heterogeneous Environments

Miladinović*, D., Gondal*, M. W., Schölkopf, B., Buhmann, J. M., Bauer, S.

Deep Generative Models for Highly Structured Data Workshop at ICLR, May 2019, *equal contribution (conference) Accepted

ei

link (url) [BibTex]

link (url) [BibTex]


no image
SOM-VAE: Interpretable Discrete Representation Learning on Time Series

Fortuin, V., Hüser, M., Locatello, F., Strathmann, H., Rätsch, G.

7th International Conference on Learning Representations (ICLR), May 2019 (conference) Accepted

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Resampled Priors for Variational Autoencoders

Bauer, M., Mnih, A.

22nd International Conference on Artificial Intelligence and Statistics, April 2019 (conference) Accepted

ei

arXiv [BibTex]

arXiv [BibTex]


no image
Semi-Generative Modelling: Covariate-Shift Adaptation with Cause and Effect Features

von Kügelgen, J., Mey, A., Loog, M.

Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics (AISTATS), 89, pages: 1361-1369, (Editors: Kamalika Chaudhuri and Masashi Sugiyama), PMLR, April 2019 (conference)

ei

PDF link (url) [BibTex]

PDF link (url) [BibTex]


no image
Sobolev Descent

Mroueh, Y., Sercu, T., Raj, A.

Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics (AISTATS), 89, pages: 2976-2985, (Editors: Kamalika Chaudhuri and Masashi Sugiyama), PMLR, April 2019 (conference)

ei

PDF link (url) [BibTex]

PDF link (url) [BibTex]


no image
Fast and Robust Shortest Paths on Manifolds Learned from Data

Arvanitidis, G., Hauberg, S., Hennig, P., Schober, M.

Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics (AISTATS), 89, pages: 1506-1515, (Editors: Kamalika Chaudhuri and Masashi Sugiyama), PMLR, April 2019 (conference)

ei pn

PDF link (url) [BibTex]

PDF link (url) [BibTex]


no image
Fast Gaussian Process Based Gradient Matching for Parameter Identification in Systems of Nonlinear ODEs

Wenk, P., Gotovos, A., Bauer, S., Gorbach, N., Krause, A., Buhmann, J. M.

Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics (AISTATS), 89, pages: 1351-1360, (Editors: Kamalika Chaudhuri and Masashi Sugiyama), PMLR, April 2019 (conference)

ei

PDF PDF link (url) [BibTex]

PDF PDF link (url) [BibTex]


Thumb xl 543 figure0 1
Active Probabilistic Inference on Matrices for Pre-Conditioning in Stochastic Optimization

de Roos, F., Hennig, P.

Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics (AISTATS), 89, pages: 1448-1457, (Editors: Kamalika Chaudhuri and Masashi Sugiyama), PMLR, April 2019 (conference)

Abstract
Pre-conditioning is a well-known concept that can significantly improve the convergence of optimization algorithms. For noise-free problems, where good pre-conditioners are not known a priori, iterative linear algebra methods offer one way to efficiently construct them. For the stochastic optimization problems that dominate contemporary machine learning, however, this approach is not readily available. We propose an iterative algorithm inspired by classic iterative linear solvers that uses a probabilistic model to actively infer a pre-conditioner in situations where Hessian-projections can only be constructed with strong Gaussian noise. The algorithm is empirically demonstrated to efficiently construct effective pre-conditioners for stochastic gradient descent and its variants. Experiments on problems of comparably low dimensionality show improved convergence. In very high-dimensional problems, such as those encountered in deep learning, the pre-conditioner effectively becomes an automatic learning-rate adaptation scheme, which we also empirically show to work well.

pn ei

PDF link (url) [BibTex]

PDF link (url) [BibTex]


no image
A 32-channel multi-coil setup optimized for human brain shimming at 9.4T

Aghaeifar, A., Zhou, J., Heule, R., Tabibian, B., Schölkopf, B., Jia, F., Zaitsev, M., Scheffler, K.

Magnetic Resonance in Medicine, 2019, (Early View) (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Enhancing Human Learning via Spaced Repetition Optimization

Tabibian, B., Upadhyay, U., De, A., Zarezade, A., Schölkopf, B., Gomez Rodriguez, M.

Proceedings of the National Academy of Sciences, 2019, PNAS published ahead of print January 22, 2019 (article)

ei

DOI Project Page Project Page [BibTex]

DOI Project Page Project Page [BibTex]


Thumb xl screenshot 2019 03 25 at 14.29.22
Learning to Control Highly Accelerated Ballistic Movements on Muscular Robots

Büchler, D., Calandra, R., Peters, J.

2019 (article) Submitted

Abstract
High-speed and high-acceleration movements are inherently hard to control. Applying learning to the control of such motions on anthropomorphic robot arms can improve the accuracy of the control but might damage the system. The inherent exploration of learning approaches can lead to instabilities and the robot reaching joint limits at high speeds. Having hardware that enables safe exploration of high-speed and high-acceleration movements is therefore desirable. To address this issue, we propose to use robots actuated by Pneumatic Artificial Muscles (PAMs). In this paper, we present a four degrees of freedom (DoFs) robot arm that reaches high joint angle accelerations of up to 28000 °/s^2 while avoiding dangerous joint limits thanks to the antagonistic actuation and limits on the air pressure ranges. With this robot arm, we are able to tune control parameters using Bayesian optimization directly on the hardware without additional safety considerations. The achieved tracking performance on a fast trajectory exceeds previous results on comparable PAM-driven robots. We also show that our system can be controlled well on slow trajectories with PID controllers due to careful construction considerations such as minimal bending of cables, lightweight kinematics and minimal contact between PAMs and PAMs with the links. Finally, we propose a novel technique to control the the co-contraction of antagonistic muscle pairs. Experimental results illustrate that choosing the optimal co-contraction level is vital to reach better tracking performance. Through the use of PAM-driven robots and learning, we do a small step towards the future development of robots capable of more human-like motions.

ei

Arxiv Video [BibTex]


no image
AReS and MaRS Adversarial and MMD-Minimizing Regression for SDEs

Abbati*, G., Wenk*, P., Osborne, M. A., Krause, A., Schölkopf, B., Bauer, S.

Proceedings of the 36th International Conference on Machine Learning (ICML), 97, pages: 1-10, Proceedings of Machine Learning Research, (Editors: Chaudhuri, Kamalika and Salakhutdinov, Ruslan), PMLR, 2019, *equal contribution (conference)

ei

PDF link (url) [BibTex]

PDF link (url) [BibTex]


no image
Inferring causation from time series with perspectives in Earth system sciences

Runge, J., Bathiany, S., Bollt, E., Camps-Valls, G., Coumou, D., Deyle, E., Glymour, C., Kretschmer, M., Mahecha, M., van Nes, E., Peters, J., Quax, R., Reichstein, M., Scheffer, M. S. B., Spirtes, P., Sugihara, G., Sun, J., Zhang, K., Zscheischler, J.

Nature Communications, 2019 (article) In revision

ei

[BibTex]

[BibTex]


no image
Kernel Stein Tests for Multiple Model Comparison

Lim, J. N., Yamada, M., Schölkopf, B., Jitkrittum, W.

Advances in Neural Information Processing Systems 32, 33rd Annual Conference on Neural Information Processing Systems, 2019 (conference) To be published

ei

[BibTex]

[BibTex]


no image
MYND: A Platform for Large-scale Neuroscientific Studies

Hohmann, M. R., Hackl, M., Wirth, B., Zaman, T., Enficiaud, R., Grosse-Wentrup, M., Schölkopf, B.

Proceedings of the 2019 Conference on Human Factors in Computing Systems (CHI), 2019 (conference) Accepted

ei

[BibTex]

[BibTex]


no image
A Kernel Stein Test for Comparing Latent Variable Models

Kanagawa, H., Jitkrittum, W., Mackey, L., Fukumizu, K., Gretton, A.

2019 (conference) Submitted

ei

arXiv [BibTex]

arXiv [BibTex]


Thumb xl rae
From Variational to Deterministic Autoencoders

Ghosh*, P., Sajjadi*, M. S. M., Vergari, A., Black, M. J., Schölkopf, B.

2019, *equal contribution (conference) Submitted

Abstract
Variational Autoencoders (VAEs) provide a theoretically-backed framework for deep generative models. However, they often produce “blurry” images, which is linked to their training objective. Sampling in the most popular implementation, the Gaussian VAE, can be interpreted as simply injecting noise to the input of a deterministic decoder. In practice, this simply enforces a smooth latent space structure. We challenge the adoption of the full VAE framework on this specific point in favor of a simpler, deterministic one. Specifically, we investigate how substituting stochasticity with other explicit and implicit regularization schemes can lead to a meaningful latent space without having to force it to conform to an arbitrarily chosen prior. To retrieve a generative mechanism for sampling new data points, we propose to employ an efficient ex-post density estimation step that can be readily adopted both for the proposed deterministic autoencoders as well as to improve sample quality of existing VAEs. We show in a rigorous empirical study that regularized deterministic autoencoding achieves state-of-the-art sample quality on the common MNIST, CIFAR-10 and CelebA datasets.

ei ps

arXiv [BibTex]


no image
Fisher Efficient Inference of Intractable Models

Liu, S., Kanamori, T., Jitkrittum, W., Chen, Y.

Advances in Neural Information Processing Systems 32, 33rd Annual Conference on Neural Information Processing Systems, 2019 (conference) To be published

ei

arXiv [BibTex]

arXiv [BibTex]

2008


no image
Stereo Matching for Calibrated Cameras without Correspondence

Helmke, U., Hüper, K., Vences, L.

In CDC 2008, pages: 2408-2413, IEEE Service Center, Piscataway, NJ, USA, 47th IEEE Conference on Decision and Control, December 2008 (inproceedings)

Abstract
We study the stereo matching problem for reconstruction of the location of 3D-points on an unknown surface patch from two calibrated identical cameras without using any a priori information about the pointwise correspondences. We assume that camera parameters and the pose between the cameras are known. Our approach follows earlier work for coplanar cameras where a gradient flow algorithm was proposed to match associated Gramians. Here we extend this method by allowing arbitrary poses for the cameras. We introduce an intrinsic Riemannian Newton algorithm that achieves local quadratic convergence rates. A closed form solution is presented, too. The efficiency of both algorithms is demonstrated by numerical experiments.

ei

PDF Web DOI [BibTex]

2008


PDF Web DOI [BibTex]


no image
Joint Kernel Support Estimation for Structured Prediction

Lampert, C., Blaschko, M.

In Proceedings of the NIPS 2008 Workshop on "Structured Input - Structured Output" (NIPS SISO 2008), pages: 1-4, NIPS Workshop on "Structured Input - Structured Output" (NIPS SISO), December 2008 (inproceedings)

Abstract
We present a new technique for structured prediction that works in a hybrid generative/ discriminative way, using a one-class support vector machine to model the joint probability of (input, output)-pairs in a joint reproducing kernel Hilbert space. Compared to discriminative techniques, like conditional random elds or structured out- put SVMs, the proposed method has the advantage that its training time depends only on the number of training examples, not on the size of the label space. Due to its generative aspect, it is also very tolerant against ambiguous, incomplete or incorrect labels. Experiments on realistic data show that our method works eciently and robustly in situations for which discriminative techniques have computational or statistical problems.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Frequent Subgraph Retrieval in Geometric Graph Databases

Nowozin, S., Tsuda, K.

In ICDM 2008, pages: 953-958, (Editors: Giannotti, F. , D. Gunopulos, F. Turini, C. Zaniolo, N. Ramakrishnan, X. Wu), IEEE Computer Society, Los Alamitos, CA, USA, 8th IEEE International Conference on Data Mining, December 2008 (inproceedings)

Abstract
Discovery of knowledge from geometric graph databases is of particular importance in chemistry and biology, because chemical compounds and proteins are represented as graphs with 3D geometric coordinates. In such applications, scientists are not interested in the statistics of the whole database. Instead they need information about a novel drug candidate or protein at hand, represented as a query graph. We propose a polynomial-delay algorithm for geometric frequent subgraph retrieval. It enumerates all subgraphs of a single given query graph which are frequent geometric $epsilon$-subgraphs under the entire class of rigid geometric transformations in a database. By using geometric$epsilon$-subgraphs, we achieve tolerance against variations in geometry. We compare the proposed algorithm to gSpan on chemical compound data, and we show that for a given minimum support the total number of frequent patterns is substantially limited by requiring geometric matching. Although the computation time per pattern is lar ger than for non-geometric graph mining,the total time is within a reasonable level even for small minimum support.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Block Iterative Algorithms for Non-negative Matrix Approximation

Sra, S.

In ICDM 2008, pages: 1037-1042, (Editors: Giannotti, F. , D. Gunopulos, F. Turini, C. Zaniolo, N. Ramakrishnan, X. Wu), IEEE Service Center, Piscataway, NJ, USA, Eighth IEEE International Conference on Data Mining, December 2008 (inproceedings)

Abstract
In this paper we present new algorithms for non-negative matrix approximation (NMA), commonly known as the NMF problem. Our methods improve upon the well-known methods of Lee & Seung~cite{lee00} for both the Frobenius norm as well the Kullback-Leibler divergence versions of the problem. For the latter problem, our results are especially interesting because it seems to have witnessed much lesser algorithmic progress as compared to the Frobenius norm NMA problem. Our algorithms are based on a particular textbf {block-iterative} acceleration technique for EM, which preserves the multiplicative nature of the updates and also ensures monotonicity. Furthermore, our algorithms also naturally apply to the Bregman-divergence NMA algorithms of~cite{suv.nips}. Experimentally, we show that our algorithms outperform the traditional Lee/Seung approach most of the time.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
A Bayesian Approach to Switching Linear Gaussian State-Space Models for Unsupervised Time-Series Segmentation

Chiappa, S.

In ICMLA 2008, pages: 3-9, (Editors: Wani, M. A., X.-W. Chen, D. Casasent, L. Kurgan, T. Hu, K. Hafeez), IEEE Computer Society, Los Alamitos, CA, USA, 7th International Conference on Machine Learning and Applications, December 2008 (inproceedings)

Abstract
Time-series segmentation in the fully unsupervised scenario in which the number of segment-types is a priori unknown is a fundamental problem in many applications. We propose a Bayesian approach to a segmentation model based on the switching linear Gaussian state-space model that enforces a sparse parametrization, such as to use only a small number of a priori available different dynamics to explain the data. This enables us to estimate the number of segment-types within the model, in contrast to previous non-Bayesian approaches where training and comparing several separate models was required. As the resulting model is computationally intractable, we introduce a variational approximation where a reformulation of the problem enables the use of efficient inference algorithms.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Iterative Subgraph Mining for Principal Component Analysis

Saigo, H., Tsuda, K.

In ICDM 2008, pages: 1007-1012, (Editors: Giannotti, F. , D. Gunopulos, F. Turini, C. Zaniolo, N. Ramakrishnan, X. Wu), IEEE Computer Society, Los Alamitos, CA, USA, IEEE International Conference on Data Mining, December 2008 (inproceedings)

Abstract
Graph mining methods enumerate frequent subgraphs efficiently, but they are not necessarily good features for machine learning due to high correlation among features. Thus it makes sense to perform principal component analysis to reduce the dimensionality and create decorrelated features. We present a novel iterative mining algorithm that captures informative patterns corresponding to major entries of top principal components. It repeatedly calls weighted substructure mining where example weights are updated in each iteration. The Lanczos algorithm, a standard algorithm of eigendecomposition, is employed to update the weights. In experiments, our patterns are shown to approximate the principal components obtained by frequent mining.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Modelling contrast discrimination data suggest both the pedestal effect and stochastic resonance to be caused by the same mechanism

Goris, R., Wagemans, J., Wichmann, F.

Journal of Vision, 8(15):1-21, November 2008 (article)

Abstract
Computational models of spatial vision typically make use of a (rectified) linear filter, a nonlinearity and dominant late noise to account for human contrast discrimination data. Linear–nonlinear cascade models predict an improvement in observers' contrast detection performance when low, subthreshold levels of external noise are added (i.e., stochastic resonance). Here, we address the issue whether a single contrast gain-control model of early spatial vision can account for both the pedestal effect, i.e., the improved detectability of a grating in the presence of a low-contrast masking grating, and stochastic resonance. We measured contrast discrimination performance without noise and in both weak and moderate levels of noise. Making use of a full quantitative description of our data with few parameters combined with comprehensive model selection assessments, we show the pedestal effect to be more reduced in the presence of weak noise than in moderate noise. This reduction rules out independent, additive sources of performance improvement and, together with a simulation study, supports the parsimonious explanation that a single mechanism underlies the pedestal effect and stochastic resonance in contrast perception.

ei

Web DOI [BibTex]


no image
gBoost: A Mathematical Programming Approach to Graph Classification and Regression

Saigo, H., Nowozin, S., Kadowaki, T., Kudo, T., Tsuda, K.

Machine Learning, 75(1):69-89, November 2008 (article)

Abstract
Graph mining methods enumerate frequently appearing subgraph patterns, which can be used as features for subsequent classification or regression. However, frequent patterns are not necessarily informative for the given learning problem. We propose a mathematical programming boosting method (gBoost) that progressively collects informative patterns. Compared to AdaBoost, gBoost can build the prediction rule with fewer iterations. To apply the boosting method to graph data, a branch-and-bound pattern search algorithm is developed based on the DFS code tree. The constructed search space is reused in later iterations to minimize the computation time. Our method can learn more efficiently than the simpler method based on frequent substructure mining, because the output labels are used as an extra information source for pruning the search space. Furthermore, by engineering the mathematical program, a wide range of machine learning problems can be solved without modifying the pattern search algorithm.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Machine Learning for Motor Skills in Robotics

Peters, J.

K{\"u}nstliche Intelligenz, 2008(4):41-43, November 2008 (article)

Abstract
Autonomous robots that can adapt to novel situations has been a long standing vision of robotics, artificial intelligence, and the cognitive sciences. Early approaches to this goal during the heydays of artificial intelligence research in the late 1980s, however, made it clear that an approach purely based on reasoning or human insights would not be able to model all the perceptuomotor tasks of future robots. Instead, new hope was put in the growing wake of machine learning that promised fully adaptive control algorithms which learn both by observation and trial-and-error. However, to date, learning techniques have yet to fulfill this promise as only few methods manage to scale into the high-dimensional domains of manipulator and humanoid robotics and usually scaling was only achieved in precisely pre-structured domains. We have investigated the ingredients for a general approach to motor skill learning in order to get one step closer towards human-like performance. For doing so, we study two major components for such an approach, i.e., firstly, a theoretically well-founded general approach to representing the required control structures for task representation and execution and, secondly, appropriate learning algorithms which can be applied in this setting.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Kernels, Regularization and Differential Equations

Steinke, F., Schölkopf, B.

Pattern Recognition, 41(11):3271-3286, November 2008 (article)

Abstract
Many common machine learning methods such as Support Vector Machines or Gaussian process inference make use of positive definite kernels, reproducing kernel Hilbert spaces, Gaussian processes, and regularization operators. In this work these objects are presented in a general, unifying framework, and interrelations are highlighted. With this in mind we then show how linear stochastic differential equation models can be incorporated naturally into the kernel framework. And vice versa, many kernel machines can be interpreted in terms of differential equations. We focus especially on ordinary differential equations, also known as dynamical systems, and it is shown that standard kernel inference algorithms are equivalent to Kalman filter methods based on such models. In order not to cloud qualitative insights with heavy mathematical machinery, we restrict ourselves to finite domains, implying that differential equations are treated via their corresponding finite difference equations.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Probabilistic Inference for Fast Learning in Control

Rasmussen, CE., Deisenroth, MP.

In EWRL 2008, pages: 229-242, (Editors: Girgin, S. , M. Loth, R. Munos, P. Preux, D. Ryabko), Springer, Berlin, Germany, 8th European Workshop on Reinforcement Learning, November 2008 (inproceedings)

Abstract
We provide a novel framework for very fast model-based reinforcement learning in continuous state and action spaces. The framework requires probabilistic models that explicitly characterize their levels of confidence. Within this framework, we use flexible, non-parametric models to describe the world based on previously collected experience. We demonstrate learning on the cart-pole problem in a setting where we provide very limited prior knowledge about the task. Learning progresses rapidly, and a good policy is found after only a hand-full of iterations.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]