Header logo is


2019


no image
Beta Power May Mediate the Effect of Gamma-TACS on Motor Performance

Mastakouri, A., Schölkopf, B., Grosse-Wentrup, M.

Engineering in Medicine and Biology Conference (EMBC), July 2019 (conference) Accepted

ei

arXiv PDF [BibTex]

2019


arXiv PDF [BibTex]


no image
Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations

Locatello, F., Bauer, S., Lucic, M., Raetsch, G., Gelly, S., Schölkopf, B., Bachem, O.

Proceedings of the 36th International Conference on Machine Learning (ICML), 97, pages: 4114-4124, Proceedings of Machine Learning Research, (Editors: Chaudhuri, Kamalika and Salakhutdinov, Ruslan), PMLR, June 2019 (conference)

ei

PDF link (url) [BibTex]

PDF link (url) [BibTex]


no image
Kernel Mean Matching for Content Addressability of GANs

Jitkrittum*, W., Sangkloy*, P., Gondal, M. W., Raj, A., Hays, J., Schölkopf, B.

Proceedings of the 36th International Conference on Machine Learning (ICML), 97, pages: 3140-3151, Proceedings of Machine Learning Research, (Editors: Chaudhuri, Kamalika and Salakhutdinov, Ruslan), PMLR, June 2019, *equal contribution (conference)

ei

PDF link (url) [BibTex]

PDF link (url) [BibTex]


no image
Generate Semantically Similar Images with Kernel Mean Matching

Jitkrittum*, W., Sangkloy*, P., Gondal, M. W., Raj, A., Hays, J., Schölkopf, B.

6th Workshop Women in Computer Vision (WiCV) (oral presentation), June 2019, *equal contribution (conference) Accepted

ei

[BibTex]

[BibTex]


Thumb xl cvpr2019 demo v2.001
Local Temporal Bilinear Pooling for Fine-grained Action Parsing

Zhang, Y., Tang, S., Muandet, K., Jarvers, C., Neumann, H.

In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 2019, June 2019 (inproceedings)

Abstract
Fine-grained temporal action parsing is important in many applications, such as daily activity understanding, human motion analysis, surgical robotics and others requiring subtle and precise operations in a long-term period. In this paper we propose a novel bilinear pooling operation, which is used in intermediate layers of a temporal convolutional encoder-decoder net. In contrast to other work, our proposed bilinear pooling is learnable and hence can capture more complex local statistics than the conventional counterpart. In addition, we introduce exact lower-dimension representations of our bilinear forms, so that the dimensionality is reduced with neither information loss nor extra computation. We perform intensive experiments to quantitatively analyze our model and show the superior performances to other state-of-the-art work on various datasets.

ei ps

Code video demo pdf link (url) [BibTex]

Code video demo pdf link (url) [BibTex]


no image
Robustly Disentangled Causal Mechanisms: Validating Deep Representations for Interventional Robustness

Suter, R., Miladinovic, D., Schölkopf, B., Bauer, S.

Proceedings of the 36th International Conference on Machine Learning (ICML), 97, pages: 6056-6065, Proceedings of Machine Learning Research, (Editors: Chaudhuri, Kamalika and Salakhutdinov, Ruslan), PMLR, June 2019 (conference)

ei

PDF link (url) [BibTex]

PDF link (url) [BibTex]


no image
First-Order Adversarial Vulnerability of Neural Networks and Input Dimension

Simon-Gabriel, C., Ollivier, Y., Bottou, L., Schölkopf, B., Lopez-Paz, D.

Proceedings of the 36th International Conference on Machine Learning (ICML), 97, pages: 5809-5817, Proceedings of Machine Learning Research, (Editors: Chaudhuri, Kamalika and Salakhutdinov, Ruslan), PMLR, June 2019 (conference)

ei

PDF link (url) [BibTex]

PDF link (url) [BibTex]


no image
Meta learning variational inference for prediction

Gordon, J., Bronskill, J., Bauer, M., Nowozin, S., Turner, R.

7th International Conference on Learning Representations (ICLR), May 2019 (conference) Accepted

ei

arXiv link (url) [BibTex]

arXiv link (url) [BibTex]


no image
Deep Lagrangian Networks: Using Physics as Model Prior for Deep Learning

Lutter, M., Ritter, C., Peters, J.

7th International Conference on Learning Representations (ICLR), May 2019 (conference) Accepted

ei

link (url) [BibTex]

link (url) [BibTex]


no image
DeepOBS: A Deep Learning Optimizer Benchmark Suite

Schneider, F., Balles, L., Hennig, P.

7th International Conference on Learning Representations (ICLR), May 2019 (conference) Accepted

pn ei

link (url) [BibTex]

link (url) [BibTex]


no image
Disentangled State Space Models: Unsupervised Learning of Dynamics across Heterogeneous Environments

Miladinović*, D., Gondal*, M. W., Schölkopf, B., Buhmann, J. M., Bauer, S.

Deep Generative Models for Highly Structured Data Workshop at ICLR, May 2019, *equal contribution (conference) Accepted

ei

link (url) [BibTex]

link (url) [BibTex]


no image
SOM-VAE: Interpretable Discrete Representation Learning on Time Series

Fortuin, V., Hüser, M., Locatello, F., Strathmann, H., Rätsch, G.

7th International Conference on Learning Representations (ICLR), May 2019 (conference) Accepted

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Resampled Priors for Variational Autoencoders

Bauer, M., Mnih, A.

22nd International Conference on Artificial Intelligence and Statistics, April 2019 (conference) Accepted

ei

arXiv [BibTex]

arXiv [BibTex]


no image
Semi-Generative Modelling: Covariate-Shift Adaptation with Cause and Effect Features

von Kügelgen, J., Mey, A., Loog, M.

22nd International Conference on Artificial Intelligence and Statistics (AISTATS), April 2019 (conference) Accepted

ei

[BibTex]

[BibTex]


no image
Sobolev Descent

Mroueh, Y., Sercu, T., Raj, A.

22nd International Conference on Artificial Intelligence and Statistics (AISTATS), April 2019 (conference) Accepted

ei

[BibTex]

[BibTex]


no image
Fast and Robust Shortest Paths on Manifolds Learned from Data

Arvanitidis, G., Hauberg, S., Hennig, P., Schober, M.

22nd International Conference on Artificial Intelligence and Statistics (AISTATS), April 2019 (conference) Accepted

pn ei

[BibTex]

[BibTex]


no image
Data scarcity, robustness and extreme multi-label classification

Babbar, R., Schölkopf, B.

Machine Learning, Special Issue of the ECML PKDD 2019 Journal Track, March 2019 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Enhancing Human Learning via Spaced Repetition Optimization

Tabibian, B., Upadhyay, U., De, A., Zarezade, A., Schölkopf, B., Gomez Rodriguez, M.

Proceedings of the National Academy of Sciences, 2019, PNAS published ahead of print January 22, 2019 (article)

ei

DOI [BibTex]

DOI [BibTex]


Thumb xl screenshot 2019 03 25 at 14.29.22
Learning to Control Highly Accelerated Ballistic Movements on Muscular Robots

Büchler, D., Calandra, R., Peters, J.

2019 (article) Submitted

Abstract
High-speed and high-acceleration movements are inherently hard to control. Applying learning to the control of such motions on anthropomorphic robot arms can improve the accuracy of the control but might damage the system. The inherent exploration of learning approaches can lead to instabilities and the robot reaching joint limits at high speeds. Having hardware that enables safe exploration of high-speed and high-acceleration movements is therefore desirable. To address this issue, we propose to use robots actuated by Pneumatic Artificial Muscles (PAMs). In this paper, we present a four degrees of freedom (DoFs) robot arm that reaches high joint angle accelerations of up to 28000 °/s^2 while avoiding dangerous joint limits thanks to the antagonistic actuation and limits on the air pressure ranges. With this robot arm, we are able to tune control parameters using Bayesian optimization directly on the hardware without additional safety considerations. The achieved tracking performance on a fast trajectory exceeds previous results on comparable PAM-driven robots. We also show that our system can be controlled well on slow trajectories with PID controllers due to careful construction considerations such as minimal bending of cables, lightweight kinematics and minimal contact between PAMs and PAMs with the links. Finally, we propose a novel technique to control the the co-contraction of antagonistic muscle pairs. Experimental results illustrate that choosing the optimal co-contraction level is vital to reach better tracking performance. Through the use of PAM-driven robots and learning, we do a small step towards the future development of robots capable of more human-like motions.

ei

Arxiv Video [BibTex]


no image
AReS and MaRS Adversarial and MMD-Minimizing Regression for SDEs

Abbati*, G., Wenk*, P., Osborne, M. A., Krause, A., Schölkopf, B., Bauer, S.

Proceedings of the 36th International Conference on Machine Learning (ICML), 97, pages: 1-10, Proceedings of Machine Learning Research, (Editors: Chaudhuri, Kamalika and Salakhutdinov, Ruslan), PMLR, 2019, *equal contribution (conference)

ei

PDF link (url) [BibTex]

PDF link (url) [BibTex]


no image
Inferring causation from time series with perspectives in Earth system sciences

Runge, J., Bathiany, S., Bollt, E., Camps-Valls, G., Coumou, D., Deyle, E., Glymour, C., Kretschmer, M., Mahecha, M., van Nes, E., Peters, J., Quax, R., Reichstein, M., Scheffer, M. S. B., Spirtes, P., Sugihara, G., Sun, J., Zhang, K., Zscheischler, J.

Nature Communications, 2019 (article) In revision

ei

[BibTex]

[BibTex]


no image
MYND: A Platform for Large-scale Neuroscientific Studies

Hohmann, M. R., Hackl, M., Wirth, B., Zaman, T., Enficiaud, R., Grosse-Wentrup, M., Schölkopf, B.

Proceedings of the 2019 Conference on Human Factors in Computing Systems (CHI), 2019 (conference) Accepted

ei

[BibTex]

[BibTex]


no image
Fisher Efficient Inference of Intractable Models

Liu, S., Kanamori, T., Jitkrittum, W., Chen, Y.

2019 (conference) Submitted

ei

arXiv [BibTex]

arXiv [BibTex]


no image
Fast Gaussian Process Based Gradient Matching for Parameter Identification in Systems of Nonlinear ODEs

Wenk, P., Gotovos, A., Bauer, S., Gorbach, N., Krause, A., Buhmann, J. M.

22nd International Conference on Artificial Intelligence and Statistics (AISTATS), 2019 (conference) Accepted

ei

PDF [BibTex]

PDF [BibTex]


Thumb xl rae
From Variational to Deterministic Autoencoders

Ghosh*, P., Sajjadi*, M. S. M., Vergari, A., Black, M. J., Schölkopf, B.

2019, *equal contribution (conference) Submitted

Abstract
Variational Autoencoders (VAEs) provide a theoretically-backed framework for deep generative models. However, they often produce “blurry” images, which is linked to their training objective. Sampling in the most popular implementation, the Gaussian VAE, can be interpreted as simply injecting noise to the input of a deterministic decoder. In practice, this simply enforces a smooth latent space structure. We challenge the adoption of the full VAE framework on this specific point in favor of a simpler, deterministic one. Specifically, we investigate how substituting stochasticity with other explicit and implicit regularization schemes can lead to a meaningful latent space without having to force it to conform to an arbitrarily chosen prior. To retrieve a generative mechanism for sampling new data points, we propose to employ an efficient ex-post density estimation step that can be readily adopted both for the proposed deterministic autoencoders as well as to improve sample quality of existing VAEs. We show in a rigorous empirical study that regularized deterministic autoencoding achieves state-of-the-art sample quality on the common MNIST, CIFAR-10 and CelebA datasets.

ei ps

arXiv [BibTex]

2007


no image
A Tutorial on Spectral Clustering

von Luxburg, U.

Statistics and Computing, 17(4):395-416, December 2007 (article)

Abstract
In recent years, spectral clustering has become one of the most popular modern clustering algorithms. It is simple to implement, can be solved efficiently by standard linear algebra software, and very often outperforms traditional clustering algorithms such as the k-means algorithm. On the first glance spectral clustering appears slightly mysterious, and it is not obvious to see why it works at all and what it really does. The goal of this tutorial is to give some intuition on those questions. We describe different graph Laplacians and their basic properties, present the most common spectral clustering algorithms, and derive those algorithms from scratch by several different approaches. Advantages and disadvantages of the different spectral clustering algorithms are discussed.

ei

PDF PDF DOI [BibTex]

2007


PDF PDF DOI [BibTex]


no image
A Tutorial on Kernel Methods for Categorization

Jäkel, F., Schölkopf, B., Wichmann, F.

Journal of Mathematical Psychology, 51(6):343-358, December 2007 (article)

Abstract
The abilities to learn and to categorize are fundamental for cognitive systems, be it animals or machines, and therefore have attracted attention from engineers and psychologists alike. Modern machine learning methods and psychological models of categorization are remarkably similar, partly because these two fields share a common history in artificial neural networks and reinforcement learning. However, machine learning is now an independent and mature field that has moved beyond psychologically or neurally inspired algorithms towards providing foundations for a theory of learning that is rooted in statistics and functional analysis. Much of this research is potentially interesting for psychological theories of learning and categorization but also hardly accessible for psychologists. Here, we provide a tutorial introduction to a popular class of machine learning tools, called kernel methods. These methods are closely related to perceptrons, radial-basis-function neural networks and exemplar theories of catego rization. Recent theoretical advances in machine learning are closely tied to the idea that the similarity of patterns can be encapsulated in a positive definite kernel. Such a positive definite kernel can define a reproducing kernel Hilbert space which allows one to use powerful tools from functional analysis for the analysis of learning algorithms. We give basic explanations of some key concepts—the so-called kernel trick, the representer theorem and regularization—which may open up the possibility that insights from machine learning can feed back into psychology.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Accurate Splice site Prediction Using Support Vector Machines

Sonnenburg, S., Schweikert, G., Philips, P., Behr, J., Rätsch, G.

BMC Bioinformatics, 8(Supplement 10):1-16, December 2007 (article)

Abstract
Background: For splice site recognition, one has to solve two classification problems: discriminating true from decoy splice sites for both acceptor and donor sites. Gene finding systems typically rely on Markov Chains to solve these tasks. Results: In this work we consider Support Vector Machines for splice site recognition. We employ the so-called weighted degree kernel which turns out well suited for this task, as we will illustrate in several experiments where we compare its prediction accuracy with that of recently proposed systems. We apply our method to the genome-wide recognition of splice sites in Caenorhabditis elegans, Drosophila melanogaster, Arabidopsis thaliana, Danio rerio, and Homo sapiens. Our performance estimates indicate that splice sites can be recognized very accurately in these genomes and that our method outperforms many other methods including Markov Chains, GeneSplicer and SpliceMachine. We provide genome-wide predictions of splice sites and a stand-alone prediction tool ready to be used for incorporation in a gene finder. Availability: Data, splits, additional information on the model selection, the whole genome predictions, as well as the stand-alone prediction tool are available for download at http:// www.fml.mpg.de/raetsch/projects/splice.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Towards compliant humanoids: an experimental assessment of suitable task space position/orientation controllers

Nakanishi, J., Mistry, M., Peters, J., Schaal, S.

In IROS 2007, 2007, pages: 2520-2527, (Editors: Grant, E. , T. C. Henderson), IEEE Service Center, Piscataway, NJ, USA, IEEE/RSJ International Conference on Intelligent Robots and Systems, November 2007 (inproceedings)

Abstract
Compliant control will be a prerequisite for humanoid robotics if these robots are supposed to work safely and robustly in human and/or dynamic environments. One view of compliant control is that a robot should control a minimal number of degrees-of-freedom (DOFs) directly, i.e., those relevant DOFs for the task, and keep the remaining DOFs maximally compliant, usually in the null space of the task. This view naturally leads to task space control. However, surprisingly few implementations of task space control can be found in actual humanoid robots. This paper makes a first step towards assessing the usefulness of task space controllers for humanoids by investigating which choices of controllers are available and what inherent control characteristics they have—this treatment will concern position and orientation control, where the latter is based on a quaternion formulation. Empirical evaluations on an anthropomorphic Sarcos master arm illustrate the robustness of the different controllers as well as the eas e of implementing and tuning them. Our extensive empirical results demonstrate that simpler task space controllers, e.g., classical resolved motion rate control or resolved acceleration control can be quite advantageous in face of inevitable modeling errors in model-based control, and that well chosen formulations are easy to implement and quite robust, such that they are useful for humanoids.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Performance Stabilization and Improvement in Graph-based Semi-supervised Learning with Ensemble Method and Graph Sharpening

Choi, I., Shin, H.

In Korean Data Mining Society Conference, pages: 257-262, Korean Data Mining Society, Seoul, Korea, Korean Data Mining Society Conference, November 2007 (inproceedings)

ei

PDF [BibTex]

PDF [BibTex]


no image
A unifying framework for robot control with redundant DOFs

Peters, J., Mistry, M., Udwadia, F., Nakanishi, J., Schaal, S.

Autonomous Robots, 24(1):1-12, October 2007 (article)

Abstract
Recently, Udwadia (Proc. R. Soc. Lond. A 2003:1783–1800, 2003) suggested to derive tracking controllers for mechanical systems with redundant degrees-of-freedom (DOFs) using a generalization of Gauss’ principle of least constraint. This method allows reformulating control problems as a special class of optimal controllers. In this paper, we take this line of reasoning one step further and demonstrate that several well-known and also novel nonlinear robot control laws can be derived from this generic methodology. We show experimental verifications on a Sarcos Master Arm robot for some of the derived controllers. The suggested approach offers a promising unification and simplification of nonlinear control law design for robots obeying rigid body dynamics equations, both with or without external constraints, with over-actuation or underactuation, as well as open-chain and closed-chain kinematics.

ei

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


no image
The Need for Open Source Software in Machine Learning

Sonnenburg, S., Braun, M., Ong, C., Bengio, S., Bottou, L., Holmes, G., LeCun, Y., Müller, K., Pereira, F., Rasmussen, C., Rätsch, G., Schölkopf, B., Smola, A., Vincent, P., Weston, J., Williamson, R.

Journal of Machine Learning Research, 8, pages: 2443-2466, October 2007 (article)

Abstract
Open source tools have recently reached a level of maturity which makes them suitable for building large-scale real-world systems. At the same time, the field of machine learning has developed a large body of powerful learning algorithms for diverse applications. However, the true potential of these methods is not realized, since existing implementations are not openly shared, resulting in software with low usability, and weak interoperability. We argue that this situation can be significantly improved by increasing incentives for researchers to publish their software under an open source model. Additionally, we outline the problems authors are faced with when trying to publish algorithmic implementations of machine learning methods. We believe that a resource of peer reviewed software accompanied by short articles would be highly valuable to both the machine learning and the general scientific community.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Discriminative Subsequence Mining for Action Classification

Nowozin, S., BakIr, G., Tsuda, K.

In ICCV 2007, pages: 1919-1923, IEEE Computer Society, Los Alamitos, CA, USA, 11th IEEE International Conference on Computer Vision, October 2007 (inproceedings)

Abstract
Recent approaches to action classification in videos have used sparse spatio-temporal words encoding local appearance around interesting movements. Most of these approaches use a histogram representation, discarding the temporal order among features. But this ordering information can contain important information about the action itself, e.g. consider the sport disciplines of hurdle race and long jump, where the global temporal order of motions (running, jumping) is important to discriminate between the two. In this work we propose to use a sequential representation which retains this temporal order. Further, we introduce Discriminative Subsequence Mining to find optimal discriminative subsequence patterns. In combination with the LPBoost classifier, this amounts to simultaneously learning a classification function and performing feature selection in the space of all possible feature sequences. The resulting classifier linearly combines a small number of interpretable decision functions, each checking for the presence of a single discriminative pattern. The classifier is benchmarked on the KTH action classification data set and outperforms the best known results in the literature.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Some observations on the masking effects of Mach bands

Curnow, T., Cowie, DA., Henning, GB., Hill, NJ.

Journal of the Optical Society of America A, 24(10):3233-3241, October 2007 (article)

Abstract
There are 8 cycle / deg ripples or oscillations in performance as a function of location near Mach bands in experiments measuring Mach bands’ masking effects on random polarity signal bars. The oscillations with increments are 180 degrees out of phase with those for decrements. The oscillations, much larger than the measurement error, appear to relate to the weighting function of the spatial-frequency-tuned channel detecting the broad- band signals. The ripples disappear with step maskers and become much smaller at durations below 25 ms, implying either that the site of masking has changed or that the weighting function and hence spatial-frequency tuning is slow to develop.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
A Hilbert Space Embedding for Distributions

Smola, A., Gretton, A., Song, L., Schölkopf, B.

In Algorithmic Learning Theory, Lecture Notes in Computer Science 4754 , pages: 13-31, (Editors: M Hutter and RA Servedio and E Takimoto), Springer, Berlin, Germany, 18th International Conference on Algorithmic Learning Theory (ALT), October 2007 (inproceedings)

Abstract
We describe a technique for comparing distributions without the need for density estimation as an intermediate step. Our approach relies on mapping the distributions into a reproducing kernel Hilbert space. Applications of this technique can be found in two-sample tests, which are used for determining whether two sets of observations arise from the same distribution, covariate shift correction, local learning, measures of independence, and density estimation.

ei

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


no image
Cluster Identification in Nearest-Neighbor Graphs

Maier, M., Hein, M., von Luxburg, U.

In ALT 2007, pages: 196-210, (Editors: Hutter, M. , R. A. Servedio, E. Takimoto), Springer, Berlin, Germany, 18th International Conference on Algorithmic Learning Theory, October 2007 (inproceedings)

Abstract
Assume we are given a sample of points from some underlying distribution which contains several distinct clusters. Our goal is to construct a neighborhood graph on the sample points such that clusters are ``identified‘‘: that is, the subgraph induced by points from the same cluster is connected, while subgraphs corresponding to different clusters are not connected to each other. We derive bounds on the probability that cluster identification is successful, and use them to predict ``optimal‘‘ values of k for the mutual and symmetric k-nearest-neighbor graphs. We point out different properties of the mutual and symmetric nearest-neighbor graphs related to the cluster identification problem.

ei

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


no image
Inducing Metric Violations in Human Similarity Judgements

Laub, J., Macke, J., Müller, K., Wichmann, F.

In Advances in Neural Information Processing Systems 19, pages: 777-784, (Editors: Schölkopf, B. , J. Platt, T. Hofmann), MIT Press, Cambridge, MA, USA, Twentieth Annual Conference on Neural Information Processing Systems (NIPS), September 2007 (inproceedings)

Abstract
Attempting to model human categorization and similarity judgements is both a very interesting but also an exceedingly difficult challenge. Some of the difficulty arises because of conflicting evidence whether human categorization and similarity judgements should or should not be modelled as to operate on a mental representation that is essentially metric. Intuitively, this has a strong appeal as it would allow (dis)similarity to be represented geometrically as distance in some internal space. Here we show how a single stimulus, carefully constructed in a psychophysical experiment, introduces l2 violations in what used to be an internal similarity space that could be adequately modelled as Euclidean. We term this one influential data point a conflictual judgement. We present an algorithm of how to analyse such data and how to identify the crucial point. Thus there may not be a strict dichotomy between either a metric or a non-metric internal space but rather degrees to which potentially large subsets of stimuli are represented metrically with a small subset causing a global violation of metricity.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Cross-Validation Optimization for Large Scale Hierarchical Classification Kernel Methods

Seeger, M.

In Advances in Neural Information Processing Systems 19, pages: 1233-1240, (Editors: Schölkopf, B. , J. Platt, T. Hofmann), MIT Press, Cambridge, MA, USA, Twentieth Annual Conference on Neural Information Processing Systems (NIPS), September 2007 (inproceedings)

Abstract
We propose a highly efficient framework for kernel multi-class models with a large and structured set of classes. Kernel parameters are learned automatically by maximizing the cross-validation log likelihood, and predictive probabilities are estimated. We demonstrate our approach on large scale text classification tasks with hierarchical class structure, achieving state-of-the-art results in an order of magnitude less time than previous work.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
A Local Learning Approach for Clustering

Wu, M., Schölkopf, B.

In Advances in Neural Information Processing Systems 19, pages: 1529-1536, (Editors: B Schölkopf and J Platt and T Hofmann), MIT Press, Cambridge, MA, USA, 20th Annual Conference on Neural Information Processing Systems (NIPS), September 2007 (inproceedings)

Abstract
We present a local learning approach for clustering. The basic idea is that a good clustering result should have the property that the cluster label of each data point can be well predicted based on its neighboring data and their cluster labels, using current supervised learning methods. An optimization problem is formulated such that its solution has the above property. Relaxation and eigen-decomposition are applied to solve this optimization problem. We also briefly investigate the parameter selection issue and provide a simple parameter selection method for the proposed algorithm. Experimental results are provided to validate the effectiveness of the proposed approach.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Mining complex genotypic features for predicting HIV-1 drug resistance

Saigo, H., Uno, T., Tsuda, K.

Bioinformatics, 23(18):2455-2462, September 2007 (article)

Abstract
Human immunodeficiency virus type 1 (HIV-1) evolves in human body, and its exposure to a drug often causes mutations that enhance the resistance against the drug. To design an effective pharmacotherapy for an individual patient, it is important to accurately predict the drug resistance based on genotype data. Notably, the resistance is not just the simple sum of the effects of all mutations. Structural biological studies suggest that the association of mutations is crucial: Even if mutations A or B alone do not affect the resistance, a significant change might happen when the two mutations occur together. Linear regression methods cannot take the associations into account, while decision tree methods can reveal only limited associations. Kernel methods and neural networks implicitly use all possible associations for prediction, but cannot select salient associations explicitly. Our method, itemset boosting, performs linear regression in the complete space of power sets of mutations. It implements a forward feature selection procedure where, in each iteration, one mutation combination is found by an efficient branch-and-bound search. This method uses all possible combinations, and salient associations are explicitly shown. In experiments, our method worked particularly well for predicting the resistance of nucleotide reverse transcriptase inhibitors (NRTIs). Furthermore, it successfully recovered many mutation associations known in biological literature.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Branch and Bound for Semi-Supervised Support Vector Machines

Chapelle, O., Sindhwani, V., Keerthi, S.

In Advances in Neural Information Processing Systems 19, pages: 217-224, (Editors: Schölkopf, B. , J. Platt, T. Hofmann), MIT Press, Cambridge, MA, USA, Twentieth Annual Conference on Neural Information Processing Systems (NIPS), September 2007 (inproceedings)

Abstract
Semi-supervised SVMs (S3VMs) attempt to learn low-density separators by maximizing the margin over labeled and unlabeled examples. The associated optimization problem is non-convex. To examine the full potential of S3VMs modulo local minima problems in current implementations, we apply branch and bound techniques for obtaining exact, globally optimal solutions. Empirical evidence suggests that the globally optimal solution can return excellent generalization performance in situations where other implementations fail completely. While our current implementation is only applicable to small datasets, we discuss variants that can potentially lead to practically useful algorithms.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
A Kernel Method for the Two-Sample-Problem

Gretton, A., Borgwardt, K., Rasch, M., Schölkopf, B., Smola, A.

In Advances in Neural Information Processing Systems 19, pages: 513-520, (Editors: B Schölkopf and J Platt and T Hofmann), MIT Press, Cambridge, MA, USA, 20th Annual Conference on Neural Information Processing Systems (NIPS), September 2007 (inproceedings)

Abstract
We propose two statistical tests to determine if two samples are from different distributions. Our test statistic is in both cases the distance between the means of the two samples mapped into a reproducing kernel Hilbert space (RKHS). The first test is based on a large deviation bound for the test statistic, while the second is based on the asymptotic distribution of this statistic. The test statistic can be computed in $O(m^2)$ time. We apply our approach to a variety of problems, including attribute matching for databases using the Hungarian marriage method, where our test performs strongly. We also demonstrate excellent performance when comparing distributions over graphs, for which no alternative tests currently exist.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
An Efficient Method for Gradient-Based Adaptation of Hyperparameters in SVM Models

Keerthi, S., Sindhwani, V., Chapelle, O.

In Advances in Neural Information Processing Systems 19, pages: 673-680, (Editors: Schölkopf, B. , J. Platt, T. Hofmann), MIT Press, Cambridge, MA, USA, Twentieth Annual Conference on Neural Information Processing Systems (NIPS), September 2007 (inproceedings)

Abstract
We consider the task of tuning hyperparameters in SVM models based on minimizing a smooth performance validation function, e.g., smoothed k-fold cross-validation error, using non-linear optimization techniques. The key computation in this approach is that of the gradient of the validation function with respect to hyperparameters. We show that for large-scale problems involving a wide choice of kernel-based models and validation functions, this computation can be very efficiently done; often within just a fraction of the training time. Empirical results show that a near-optimal set of hyperparameters can be identified by our approach with very few training rounds and gradient computations.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Learning Dense 3D Correspondence

Steinke, F., Schölkopf, B., Blanz, V.

In Advances in Neural Information Processing Systems 19, pages: 1313-1320, (Editors: B Schölkopf and J Platt and T Hofmann), MIT Press, Cambridge, MA, USA, 20th Annual Conference on Neural Information Processing Systems (NIPS), September 2007 (inproceedings)

Abstract
Establishing correspondence between distinct objects is an important and nontrivial task: correctness of the correspondence hinges on properties which are difficult to capture in an a priori criterion. While previous work has used a priori criteria which in some cases led to very good results, the present paper explores whether it is possible to learn a combination of features that, for a given training set of aligned human heads, characterizes the notion of correct correspondence. By optimizing this criterion, we are then able to compute correspondence and morphs for novel heads.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Optimal Dominant Motion Estimation using Adaptive Search of Transformation Space

Ulges, A., Lampert, CH., Keysers, D., Breuel, TM.

In DAGM 2007, pages: 204-215, (Editors: Hamprecht, F. A., C. Schnörr, B. Jähne), Springer, Berlin, Germany, 29th Annual Symposium of the German Association for Pattern Recognition, September 2007 (inproceedings)

Abstract
The extraction of a parametric global motion from a motion field is a task with several applications in video processing. We present two probabilistic formulations of the problem and carry out optimization using the RAST algorithm, a geometric matching method novel to motion estimation in video. RAST uses an exhaustive and adaptive search of transformation space and thus gives -- in contrast to local sampling optimization techniques used in the past -- a globally optimal solution. Among other applications, our framework can thus be used as a source of ground truth for benchmarking motion estimation algorithms. Our main contributions are: first, the novel combination of a state-of- the-art MAP criterion for dominant motion estimation with a search procedure that guarantees global optimality. Second, experimental re- sults that illustrate the superior performance of our approach on synthetic flow fields as well as real-world video streams. Third, a significant speedup of the search achieved by extending the mod el with an additional smoothness prior.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Output Grouping using Dirichlet Mixtures of Linear Gaussian State-Space Models

Chiappa, S., Barber, D.

In ISPA 2007, pages: 446-451, IEEE Computer Society, Los Alamitos, CA, USA, 5th International Symposium on Image and Signal Processing and Analysis, September 2007 (inproceedings)

Abstract
We consider a model to cluster the components of a vector time-series. The task is to assign each component of the vector time-series to a single cluster, basing this assignment on the simultaneous dynamical similarity of the component to other components in the cluster. This is in contrast to the more familiar task of clustering a set of time-series based on global measures of their similarity. The model is based on a Dirichlet Mixture of Linear Gaussian State-Space models (LGSSMs), in which each LGSSM is treated with a prior to encourage the simplest explanation. The resulting model is approximated using a ‘collapsed’ variational Bayes implementation.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Manifold Denoising

Hein, M., Maier, M.

In Advances in Neural Information Processing Systems 19, pages: 561-568, (Editors: Schölkopf, B. , J. Platt, T. Hofmann), MIT Press, Cambridge, MA, USA, Twentieth Annual Conference on Neural Information Processing Systems (NIPS), September 2007 (inproceedings)

Abstract
We consider the problem of denoising a noisily sampled submanifold $M$ in $R^d$, where the submanifold $M$ is a priori unknown and we are only given a noisy point sample. The presented denoising algorithm is based on a graph-based diffusion process of the point sample. We analyze this diffusion process using recent results about the convergence of graph Laplacians. In the experiments we show that our method is capable of dealing with non-trivial high-dimensional noise. Moreover using the denoising algorithm as pre-processing method we can improve the results of a semi-supervised learning algorithm.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
How to Find Interesting Locations in Video: A Spatiotemporal Interest Point Detector Learned from Human Eye movements

Kienzle, W., Schölkopf, B., Wichmann, F., Franz, M.

In Pattern Recognition, pages: 405-414, (Editors: FA Hamprecht and C Schnörr and B Jähne), Springer, Berlin, Germany, 29th Annual Symposium of the German Association for Pattern Recognition (DAGM), September 2007 (inproceedings)

Abstract
Interest point detection in still images is a well-studied topic in computer vision. In the spatiotemporal domain, however, it is still unclear which features indicate useful interest points. In this paper we approach the problem by emph{learning} a detector from examples: we record eye movements of human subjects watching video sequences and train a neural network to predict which locations are likely to become eye movement targets. We show that our detector outperforms current spatiotemporal interest point architectures on a standard classification dataset.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]