Header logo is


2018


no image
Parallel and functionally segregated processing of task phase and conscious content in the prefrontal cortex

Kapoor, V., Besserve, M., Logothetis, N. K., Panagiotaropoulos, T. I.

Communications Biology, 1(215):1-12, December 2018 (article)

ei

link (url) DOI Project Page [BibTex]

2018


link (url) DOI Project Page [BibTex]


Thumb xl screen shot 2019 01 07 at 12.05.00
Control of Musculoskeletal Systems using Learned Dynamics Models

Büchler, D., Calandra, R., Schölkopf, B., Peters, J.

IEEE Robotics and Automation Letters, Robotics and Automation Letters, 3(4):3161-3168, IEEE, 2018 (article)

Abstract
Controlling musculoskeletal systems, especially robots actuated by pneumatic artificial muscles, is a challenging task due to nonlinearities, hysteresis effects, massive actuator de- lay and unobservable dependencies such as temperature. Despite such difficulties, muscular systems offer many beneficial prop- erties to achieve human-comparable performance in uncertain and fast-changing tasks. For example, muscles are backdrivable and provide variable stiffness while offering high forces to reach high accelerations. In addition, the embodied intelligence deriving from the compliance might reduce the control demands for specific tasks. In this paper, we address the problem of how to accurately control musculoskeletal robots. To address this issue, we propose to learn probabilistic forward dynamics models using Gaussian processes and, subsequently, to employ these models for control. However, Gaussian processes dynamics models cannot be set-up for our musculoskeletal robot as for traditional motor- driven robots because of unclear state composition etc. We hence empirically study and discuss in detail how to tune these approaches to complex musculoskeletal robots and their specific challenges. Moreover, we show that our model can be used to accurately control an antagonistic pair of pneumatic artificial muscles for a trajectory tracking task while considering only one- step-ahead predictions of the forward model and incorporating model uncertainty.

ei

RAL18final link (url) DOI Project Page [BibTex]

RAL18final link (url) DOI Project Page [BibTex]


no image
Infinite Factorial Finite State Machine for Blind Multiuser Channel Estimation

Ruiz, F. J. R., Valera, I., Svensson, L., Perez-Cruz, F.

IEEE Transactions on Cognitive Communications and Networking, 4(2):177-191, June 2018 (article)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Assisting Movement Training and Execution With Visual and Haptic Feedback

Ewerton, M., Rother, D., Weimar, J., Kollegger, G., Wiemeyer, J., Peters, J., Maeda, G.

Frontiers in Neurorobotics, 12, May 2018 (article)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Mixture of Attractors: A Novel Movement Primitive Representation for Learning Motor Skills From Demonstrations

Manschitz, S., Gienger, M., Kober, J., Peters, J.

IEEE Robotics and Automation Letters, 3(2):926-933, April 2018 (article)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Probabilistic movement primitives under unknown system dynamics

Paraschos, A., Rueckert, E., Peters, J., Neumann, G.

Advanced Robotics, 32(6):297-310, April 2018 (article)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
An Algorithmic Perspective on Imitation Learning

Osa, T., Pajarinen, J., Neumann, G., Bagnell, J., Abbeel, P., Peters, J.

Foundations and Trends in Robotics, 7(1-2):1-179, March 2018 (article)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Using Probabilistic Movement Primitives in Robotics

Paraschos, A., Daniel, C., Peters, J., Neumann, G.

Autonomous Robots, 42(3):529-551, March 2018 (article)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
A kernel-based approach to learning contact distributions for robot manipulation tasks

Kroemer, O., Leischnig, S., Luettgen, S., Peters, J.

Autonomous Robots, 42(3):581-600, March 2018 (article)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Approximate Value Iteration Based on Numerical Quadrature

Vinogradska, J., Bischoff, B., Peters, J.

IEEE Robotics and Automation Letters, 3(2):1330-1337, January 2018 (article)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Biomimetic Tactile Sensors and Signal Processing with Spike Trains: A Review

Yi, Z., Zhang, Y., Peters, J.

Sensors and Actuators A: Physical, 269, pages: 41-52, January 2018 (article)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Design and Analysis of the NIPS 2016 Review Process

Shah*, N., Tabibian*, B., Muandet, K., Guyon, I., von Luxburg, U.

Journal of Machine Learning Research, 19(49):1-34, 2018, *equal contribution (article)

ei slt

arXiv link (url) Project Page Project Page [BibTex]

arXiv link (url) Project Page Project Page [BibTex]


no image
A Flexible Approach for Fair Classification

Zafar, M. B., Valera, I., Gomez Rodriguez, M., Gummadi, K.

Journal of Machine Learning, 2018 (article) Accepted

ei

Project Page [BibTex]

Project Page [BibTex]


no image
Does universal controllability of physical systems prohibit thermodynamic cycles?

Janzing, D., Wocjan, P.

Open Systems and Information Dynamics, 25(3):1850016, 2018 (article)

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Learning Causality and Causality-Related Learning: Some Recent Progress

Zhang, K., Schölkopf, B., Spirtes, P., Glymour, C.

National Science Review, 5(1):26-29, 2018 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Online optimal trajectory generation for robot table tennis

Koc, O., Maeda, G., Peters, J.

Robotics and Autonomous Systems, 105, pages: 121-137, 2018 (article)

ei

PDF link (url) DOI Project Page [BibTex]

PDF link (url) DOI Project Page [BibTex]


no image
Counterfactual Mean Embedding: A Kernel Method for Nonparametric Causal Inference

Muandet, K., Kanagawa, M., Saengkyongam, S., Marukata, S.

Arxiv e-prints, arXiv:1805.08845v1 [stat.ML], 2018 (article)

Abstract
This paper introduces a novel Hilbert space representation of a counterfactual distribution---called counterfactual mean embedding (CME)---with applications in nonparametric causal inference. Counterfactual prediction has become an ubiquitous tool in machine learning applications, such as online advertisement, recommendation systems, and medical diagnosis, whose performance relies on certain interventions. To infer the outcomes of such interventions, we propose to embed the associated counterfactual distribution into a reproducing kernel Hilbert space (RKHS) endowed with a positive definite kernel. Under appropriate assumptions, the CME allows us to perform causal inference over the entire landscape of the counterfactual distribution. The CME can be estimated consistently from observational data without requiring any parametric assumption about the underlying distributions. We also derive a rate of convergence which depends on the smoothness of the conditional mean and the Radon-Nikodym derivative of the underlying marginal distributions. Our framework can deal with not only real-valued outcome, but potentially also more complex and structured outcomes such as images, sequences, and graphs. Lastly, our experimental results on off-policy evaluation tasks demonstrate the advantages of the proposed estimator.

ei pn

arXiv [BibTex]

arXiv [BibTex]


no image
Hierarchical Reinforcement Learning of Multiple Grasping Strategies with Human Instructions

Osa, T., Peters, J., Neumann, G.

Advanced Robotics, 32(18):955-968, 2018 (article)

ei

DOI Project Page [BibTex]


no image
Autofocusing-based phase correction

Loktyushin, A., Ehses, P., Schölkopf, B., Scheffler, K.

Magnetic Resonance in Medicine, 80(3):958-968, 2018 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Case series: Slowing alpha rhythm in late-stage ALS patients

Hohmann, M. R., Fomina, T., Jayaram, V., Emde, T., Just, J., Synofzik, M., Schölkopf, B., Schöls, L., Grosse-Wentrup, M.

Clinical Neurophysiology, 129(2):406-408, 2018 (article)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Inverse Reinforcement Learning via Nonparametric Spatio-Temporal Subgoal Modeling

Šošić, A., Rueckert, E., Peters, J., Zoubir, A., Koeppl, H.

Journal of Machine Learning Research, 19(69):1-45, 2018 (article)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Grip Stabilization of Novel Objects using Slip Prediction

Veiga, F., Peters, J., Hermans, T.

IEEE Transactions on Haptics, 2018 (article) In press

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Electrophysiological correlates of neurodegeneration in motor and non-motor brain regions in amyotrophic lateral sclerosis—implications for brain–computer interfacing

Kellmeyer, P., Grosse-Wentrup, M., Schulze-Bonhage, A., Ziemann, U., Ball, T.

Journal of Neural Engineering, 15(4):041003, IOP Publishing, 2018 (article)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Quantum machine learning: a classical perspective

Ciliberto, C., Herbster, M., Ialongo, A. D., Pontil, M., Rocchetto, A., Severini, S., Wossnig, L.

Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 474(2209):20170551, 2018 (article)

ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Kernel-based tests for joint independence

Pfister, N., Bühlmann, P., Schölkopf, B., Peters, J.

Journal of the Royal Statistical Society: Series B (Statistical Methodology), 80(1):5-31, 2018 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Prediction of Glucose Tolerance without an Oral Glucose Tolerance Test

Babbar, R., Heni, M., Peter, A., Hrabě de Angelis, M., Häring, H., Fritsche, A., Preissl, H., Schölkopf, B., Wagner, R.

Frontiers in Endocrinology, 9, pages: 82, 2018 (article)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Invariant Models for Causal Transfer Learning

Rojas-Carulla, M., Schölkopf, B., Turner, R., Peters, J.

Journal of Machine Learning Research, 19(36):1-34, 2018 (article)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
MOABB: Trustworthy algorithm benchmarking for BCIs

Jayaram, V., Barachant, A.

Journal of Neural Engineering, 15(6):066011, 2018 (article)

ei

link (url) DOI Project Page [BibTex]

link (url) DOI Project Page [BibTex]


no image
f-Divergence constrained policy improvement

Belousov, B., Peters, J.

Journal of Machine Learning Research, 2018 (article) Submitted

ei

Project Page [BibTex]

Project Page [BibTex]


no image
Phylogenetic convolutional neural networks in metagenomics

Fioravanti*, D., Giarratano*, Y., Maggio*, V., Agostinelli, C., Chierici, M., Jurman, G., Furlanello, C.

BMC Bioinformatics, 19(2):49 pages, 2018, *equal contribution (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Food specific inhibitory control under negative mood in binge-eating disorder: Evidence from a multimethod approach

Leehr, E. J., Schag, K., Dresler, T., Grosse-Wentrup, M., Hautzinger, M., Fallgatter, A. J., Zipfel, S., Giel, K. E., Ehlis, A.

International Journal of Eating Disorders, 51(2):112-123, Wiley Online Library, 2018 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Linking imaging to omics utilizing image-guided tissue extraction

Disselhorst, J. A., Krueger, M. A., Ud-Dean, S. M. M., Bezrukov, I., Jarboui, M. A., Trautwein, C., Traube, A., Spindler, C., Cotton, J. M., Leibfritz, D., Pichler, B. J.

Proceedings of the National Academy of Sciences, 115(13):E2980-E2987, 2018 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Methods in Psychophysics

Wichmann, F. A., Jäkel, F.

In Stevens’ Handbook of Experimental Psychology and Cognitive Neuroscience, 5 (Methodology), 7, 4th, John Wiley & Sons, Inc., 2018 (inbook)

ei

[BibTex]

[BibTex]


no image
Discriminative Transfer Learning for General Image Restoration

Xiao, L., Heide, F., Heidrich, W., Schölkopf, B., Hirsch, M.

IEEE Transactions on Image Processing, 27(8):4091-4104, 2018 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Dissecting the synapse- and frequency-dependent network mechanisms of in vivo hippocampal sharp wave-ripples

Ramirez-Villegas, J. F., Willeke, K. F., Logothetis, N. K., Besserve, M.

Neuron, 100(5):1224-1240, 2018 (article)

ei

link (url) DOI Project Page [BibTex]

link (url) DOI Project Page [BibTex]


no image
In-Hand Object Stabilization by Independent Finger Control

Veiga, F. F., Edin, B. B., Peters, J.

IEEE Transactions on Robotics, 2018 (article) Submitted

ei

Project Page [BibTex]

Project Page [BibTex]


no image
Visualizing and understanding Sum-Product Networks

Vergari, A., Di Mauro, N., Esposito, F.

Machine Learning, 2018 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Transfer Learning for BCIs

Jayaram, V., Fiebig, K., Peters, J., Grosse-Wentrup, M.

In Brain–Computer Interfaces Handbook, pages: 425-442, 22, (Editors: Chang S. Nam, Anton Nijholt and Fabien Lotte), CRC Press, 2018 (incollection)

ei

Project Page [BibTex]

Project Page [BibTex]


no image
Non-Equilibrium Relations for Bounded Rational Decision-Making in Changing Environments

Grau-Moya, J, Krüger, M, Braun, DA

Entropy, 20(1:1):1-28, January 2018 (article)

Abstract
Living organisms from single cells to humans need to adapt continuously to respond to changes in their environment. The process of behavioural adaptation can be thought of as improving decision-making performance according to some utility function. Here, we consider an abstract model of organisms as decision-makers with limited information-processing resources that trade off between maximization of utility and computational costs measured by a relative entropy, in a similar fashion to thermodynamic systems undergoing isothermal transformations. Such systems minimize the free energy to reach equilibrium states that balance internal energy and entropic cost. When there is a fast change in the environment, these systems evolve in a non-equilibrium fashion because they are unable to follow the path of equilibrium distributions. Here, we apply concepts from non-equilibrium thermodynamics to characterize decision-makers that adapt to changing environments under the assumption that the temporal evolution of the utility function is externally driven and does not depend on the decision-maker’s action. This allows one to quantify performance loss due to imperfect adaptation in a general manner and, additionally, to find relations for decision-making similar to Crooks’ fluctuation theorem and Jarzynski’s equality. We provide simulations of several exemplary decision and inference problems in the discrete and continuous domains to illustrate the new relations.

ei

DOI [BibTex]

DOI [BibTex]

2005


no image
Kernel Methods for Measuring Independence

Gretton, A., Herbrich, R., Smola, A., Bousquet, O., Schölkopf, B.

Journal of Machine Learning Research, 6, pages: 2075-2129, December 2005 (article)

Abstract
We introduce two new functionals, the constrained covariance and the kernel mutual information, to measure the degree of independence of random variables. These quantities are both based on the covariance between functions of the random variables in reproducing kernel Hilbert spaces (RKHSs). We prove that when the RKHSs are universal, both functionals are zero if and only if the random variables are pairwise independent. We also show that the kernel mutual information is an upper bound near independence on the Parzen window estimate of the mutual information. Analogous results apply for two correlation-based dependence functionals introduced earlier: we show the kernel canonical correlation and the kernel generalised variance to be independence measures for universal kernels, and prove the latter to be an upper bound on the mutual information near independence. The performance of the kernel dependence functionals in measuring independence is verified in the context of independent component analysis.

ei

PDF PostScript PDF [BibTex]

2005


PDF PostScript PDF [BibTex]


no image
Some thoughts about Gaussian Processes

Chapelle, O.

NIPS Workshop on Open Problems in Gaussian Processes for Machine Learning, December 2005 (talk)

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
A Unifying View of Sparse Approximate Gaussian Process Regression

Quinonero Candela, J., Rasmussen, C.

Journal of Machine Learning Research, 6, pages: 1935-1959, December 2005 (article)

Abstract
We provide a new unifying view, including all existing proper probabilistic sparse approximations for Gaussian process regression. Our approach relies on expressing the effective prior which the methods are using. This allows new insights to be gained, and highlights the relationship between existing methods. It also allows for a clear theoretically justified ranking of the closeness of the known approximations to the corresponding full GPs. Finally we point directly to designs of new better sparse approximations, combining the best of the existing strategies, within attractive computational constraints.

ei

PDF [BibTex]

PDF [BibTex]


no image
Maximal Margin Classification for Metric Spaces

Hein, M., Bousquet, O., Schölkopf, B.

Journal of Computer and System Sciences, 71(3):333-359, October 2005 (article)

Abstract
In order to apply the maximum margin method in arbitrary metric spaces, we suggest to embed the metric space into a Banach or Hilbert space and to perform linear classification in this space. We propose several embeddings and recall that an isometric embedding in a Banach space is always possible while an isometric embedding in a Hilbert space is only possible for certain metric spaces. As a result, we obtain a general maximum margin classification algorithm for arbitrary metric spaces (whose solution is approximated by an algorithm of Graepel. Interestingly enough, the embedding approach, when applied to a metric which can be embedded into a Hilbert space, yields the SVM algorithm, which emphasizes the fact that its solution depends on the metric and not on the kernel. Furthermore we give upper bounds of the capacity of the function classes corresponding to both embeddings in terms of Rademacher averages. Finally we compare the capacities of these function classes directly.

ei

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


no image
Selective integration of multiple biological data for supervised network inference

Kato, T., Tsuda, K., Asai, K.

Bioinformatics, 21(10):2488 , October 2005 (article)

ei

PDF [BibTex]

PDF [BibTex]


no image
Assessing Approximate Inference for Binary Gaussian Process Classification

Kuss, M., Rasmussen, C.

Journal of Machine Learning Research, 6, pages: 1679 , October 2005 (article)

Abstract
Gaussian process priors can be used to define flexible, probabilistic classification models. Unfortunately exact Bayesian inference is analytically intractable and various approximation techniques have been proposed. In this work we review and compare Laplace‘s method and Expectation Propagation for approximate Bayesian inference in the binary Gaussian process classification model. We present a comprehensive comparison of the approximations, their predictive performance and marginal likelihood estimates to results obtained by MCMC sampling. We explain theoretically and corroborate empirically the advantages of Expectation Propagation compared to Laplace‘s method.

ei

PDF PDF [BibTex]

PDF PDF [BibTex]