Header logo is


2017


no image
Generalized exploration in policy search

van Hoof, H., Tanneberg, D., Peters, J.

Machine Learning, 106(9-10):1705-1724 , (Editors: Kurt Driessens, Dragi Kocev, Marko Robnik‐Sikonja, and Myra Spiliopoulou), October 2017, Special Issue of the ECML PKDD 2017 Journal Track (article)

ei

DOI Project Page [BibTex]

2017


DOI Project Page [BibTex]


no image
Probabilistic Prioritization of Movement Primitives

Paraschos, A., Lioutikov, R., Peters, J., Neumann, G.

Proceedings of the International Conference on Intelligent Robot Systems, and IEEE Robotics and Automation Letters (RA-L), 2(4):2294-2301, October 2017 (article)

ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Learning Movement Primitive Libraries through Probabilistic Segmentation

Lioutikov, R., Neumann, G., Maeda, G., Peters, J.

International Journal of Robotics Research, 36(8):879-894, July 2017 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Guiding Trajectory Optimization by Demonstrated Distributions

Osa, T., Ghalamzan E., A. M., Stolkin, R., Lioutikov, R., Peters, J., Neumann, G.

IEEE Robotics and Automation Letters, 2(2):819-826, April 2017 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Whole-body multi-contact motion in humans and humanoids: Advances of the CoDyCo European project

Padois, V., Ivaldi, S., Babic, J., Mistry, M., Peters, J., Nori, F.

Robotics and Autonomous Systems, 90, pages: 97-117, April 2017, Special Issue on New Research Frontiers for Intelligent Autonomous Systems (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Probabilistic Movement Primitives for Coordination of Multiple Human-Robot Collaborative Tasks

Maeda, G., Neumann, G., Ewerton, M., Lioutikov, R., Kroemer, O., Peters, J.

Autonomous Robots, 41(3):593-612, March 2017 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Bioinspired tactile sensor for surface roughness discrimination

Yi, Z., Zhang, Y., Peters, J.

Sensors and Actuators A: Physical, 255, pages: 46-53, March 2017 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Model-based Contextual Policy Search for Data-Efficient Generalization of Robot Skills

Kupcsik, A., Deisenroth, M., Peters, J., Ai Poh, L., Vadakkepat, V., Neumann, G.

Artificial Intelligence, 247, pages: 415-439, 2017, Special Issue on AI and Robotics (article)

ei

link (url) DOI Project Page [BibTex]

link (url) DOI Project Page [BibTex]


no image
Anticipatory Action Selection for Human-Robot Table Tennis

Wang, Z., Boularias, A., Mülling, K., Schölkopf, B., Peters, J.

Artificial Intelligence, 247, pages: 399-414, 2017, Special Issue on AI and Robotics (article)

Abstract
Abstract Anticipation can enhance the capability of a robot in its interaction with humans, where the robot predicts the humans' intention for selecting its own action. We present a novel framework of anticipatory action selection for human-robot interaction, which is capable to handle nonlinear and stochastic human behaviors such as table tennis strokes and allows the robot to choose the optimal action based on prediction of the human partner's intention with uncertainty. The presented framework is generic and can be used in many human-robot interaction scenarios, for example, in navigation and human-robot co-manipulation. In this article, we conduct a case study on human-robot table tennis. Due to the limited amount of time for executing hitting movements, a robot usually needs to initiate its hitting movement before the opponent hits the ball, which requires the robot to be anticipatory based on visual observation of the opponent's movement. Previous work on Intention-Driven Dynamics Models (IDDM) allowed the robot to predict the intended target of the opponent. In this article, we address the problem of action selection and optimal timing for initiating a chosen action by formulating the anticipatory action selection as a Partially Observable Markov Decision Process (POMDP), where the transition and observation are modeled by the \{IDDM\} framework. We present two approaches to anticipatory action selection based on the \{POMDP\} formulation, i.e., a model-free policy learning method based on Least-Squares Policy Iteration (LSPI) that employs the \{IDDM\} for belief updates, and a model-based Monte-Carlo Planning (MCP) method, which benefits from the transition and observation model by the IDDM. Experimental results using real data in a simulated environment show the importance of anticipatory action selection, and that \{POMDPs\} are suitable to formulate the anticipatory action selection problem by taking into account the uncertainties in prediction. We also show that existing algorithms for POMDPs, such as \{LSPI\} and MCP, can be applied to substantially improve the robot's performance in its interaction with humans.

am ei

DOI [BibTex]

DOI [BibTex]


no image
easyGWAS: A Cloud-based Platform for Comparing the Results of Genome-wide Association Studies

Grimm, D., Roqueiro, D., Salome, P., Kleeberger, S., Greshake, B., Zhu, W., Liu, C., Lippert, C., Stegle, O., Schölkopf, B., Weigel, D., Borgwardt, K.

The Plant Cell, 29(1):5-19, 2017 (article)

ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
A Novel Unsupervised Segmentation Approach Quantifies Tumor Tissue Populations Using Multiparametric MRI: First Results with Histological Validation

Katiyar, P., Divine, M. R., Kohlhofer, U., Quintanilla-Martinez, L., Schölkopf, B., Pichler, B. J., Disselhorst, J. A.

Molecular Imaging and Biology, 19(3):391-397, 2017 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Minimax Estimation of Kernel Mean Embeddings

Tolstikhin, I., Sriperumbudur, B., Muandet, K.

Journal of Machine Learning Research, 18(86):1-47, 2017 (article)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Kernel Mean Embedding of Distributions: A Review and Beyond

Muandet, K., Fukumizu, K., Sriperumbudur, B., Schölkopf, B.

Foundations and Trends in Machine Learning, 10(1-2):1-141, 2017 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Prediction of intention during interaction with iCub with Probabilistic Movement Primitives

Dermy, O., Paraschos, A., Ewerton, M., Charpillet, F., Peters, J., Ivaldi, S.

Frontiers in Robotics and AI, 4, pages: 45, 2017 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Manifold-based multi-objective policy search with sample reuse

Parisi, S., Pirotta, M., Peters, J.

Neurocomputing, 263, pages: 3-14, (Editors: Madalina Drugan, Marco Wiering, Peter Vamplew, and Madhu Chetty), 2017, Special Issue on Multi-Objective Reinforcement Learning (article)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Spectral Clustering predicts tumor tissue heterogeneity using dynamic 18F-FDG PET: a complement to the standard compartmental modeling approach

Katiyar, P., Divine, M. R., Kohlhofer, U., Quintanilla-Martinez, L., Schölkopf, B., Pichler, B. J., Disselhorst, J. A.

Journal of Nuclear Medicine, 58(4):651-657, 2017 (article)

ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Electroencephalographic identifiers of motor adaptation learning

Ozdenizci, O., Yalcin, M., Erdogan, A., Patoglu, V., Grosse-Wentrup, M., Cetin, M.

Journal of Neural Engineering, 14(4):046027, 2017 (article)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Detecting distortions of peripherally presented letter stimuli under crowded conditions

Wallis, T. S. A., Tobias, S., Bethge, M., Wichmann, F. A.

Attention, Perception, & Psychophysics, 79(3):850-862, 2017 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Temporal evolution of the central fixation bias in scene viewing

Rothkegel, L. O. M., Trukenbrod, H. A., Schütt, H. H., Wichmann, F. A., Engbert, R.

Journal of Vision, 17(13):3, 2017 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
BundleMAP: Anatomically Localized Classification, Regression, and Hypothesis Testing in Diffusion MRI

Khatami, M., Schmidt-Wilcke, T., Sundgren, P. C., Abbasloo, A., Schölkopf, B., Schultz, T.

Pattern Recognition, 63, pages: 593-600, 2017 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
A parametric texture model based on deep convolutional features closely matches texture appearance for humans

Wallis, T. S. A., Funke, C. M., Ecker, A. S., Gatys, L. A., Wichmann, F. A., Bethge, M.

Journal of Vision, 17(12), 2017 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Model Selection for Gaussian Mixture Models

Huang, T., Peng, H., Zhang, K.

Statistica Sinica, 27(1):147-169, 2017 (article)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
An image-computable psychophysical spatial vision model

Schütt, H. H., Wichmann, F. A.

Journal of Vision, 17(12), 2017 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Methods and measurements to compare men against machines

Wichmann, F. A., Janssen, D. H. J., Geirhos, R., Aguilar, G., Schütt, H. H., Maertens, M., Bethge, M.

Electronic Imaging, pages: 36-45(10), 2017 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
A Comparison of Autoregressive Hidden Markov Models for Multimodal Manipulations With Variable Masses

Kroemer, O., Peters, J.

IEEE Robotics and Automation Letters, 2(2):1101-1108, 2017 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Phase Estimation for Fast Action Recognition and Trajectory Generation in Human-Robot Collaboration

Maeda, G., Ewerton, M., Neumann, G., Lioutikov, R., Peters, J.

International Journal of Robotics Research, 36(13-14):1579-1594, 2017, Special Issue on the Seventeenth International Symposium on Robotics Research (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
A Phase-coded Aperture Camera with Programmable Optics

Chen, J., Hirsch, M., Heintzmann, R., Eberhardt, B., Lensch, H. P. A.

Electronic Imaging, 2017(17):70-75, 2017 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Absence of EEG correlates of self-referential processing depth in ALS

Fomina, T., Weichwald, S., Synofzik, M., Just, J., Schöls, L., Schölkopf, B., Grosse-Wentrup, M.

PLOS ONE, 12(6):e0180136, 2017 (article)

ei

PDF DOI [BibTex]


no image
On Maximum Entropy and Inference

Gresele, L., Marsili, M.

Entropy, 19(12):article no. 642, 2017 (article)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Towards Engagement Models that Consider Individual Factors in HRI: On the Relation of Extroversion and Negative Attitude Towards Robots to Gaze and Speech During a Human-Robot Assembly Task

Ivaldi, S., Lefort, S., Peters, J., Chetouani, M., Provasi, J., Zibetti, E.

International Journal of Social Robotics, 9(1):63-86, 2017 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Non-parametric Policy Search with Limited Information Loss

van Hoof, H., Neumann, G., Peters, J.

Journal of Machine Learning Research , 18(73):1-46, 2017 (article)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Stability of Controllers for Gaussian Process Dynamics

Vinogradska, J., Bischoff, B., Nguyen-Tuong, D., Peters, J.

Journal of Machine Learning Research, 18(100):1-37, 2017 (article)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
SUV-quantification of physiological lung tissue in an integrated PET/MR-system: Impact of lung density and bone tissue

Seith, F., Schmidt, H., Gatidis, S., Bezrukov, I., Schraml, C., Pfannenberg, C., la Fougère, C., Nikolaou, K., Schwenzer, N.

PLOS ONE, 12(5):1-13, 2017 (article)

ei

DOI [BibTex]

DOI [BibTex]

2009


no image
Machine Learning for Brain-Computer Interfaces

Hill, NJ.

Mini-Symposia on Assistive Machine Learning for People with Disabilities at NIPS (AMD), December 2009 (talk)

Abstract
Brain-computer interfaces (BCI) aim to be the ultimate in assistive technology: decoding a user‘s intentions directly from brain signals without involving any muscles or peripheral nerves. Thus, some classes of BCI potentially offer hope for users with even the most extreme cases of paralysis, such as in late-stage Amyotrophic Lateral Sclerosis, where nothing else currently allows communication of any kind. Other lines in BCI research aim to restore lost motor function in as natural a way as possible, reconnecting and in some cases re-training motor-cortical areas to control prosthetic, or previously paretic, limbs. Research and development are progressing on both invasive and non-invasive fronts, although BCI has yet to make a breakthrough to widespread clinical application. The high-noise high-dimensional nature of brain-signals, particularly in non-invasive approaches and in patient populations, make robust decoding techniques a necessity. Generally, the approach has been to use relatively simple feature extraction techniques, such as template matching and band-power estimation, coupled to simple linear classifiers. This has led to a prevailing view among applied BCI researchers that (sophisticated) machine-learning is irrelevant since "it doesn‘t matter what classifier you use once you‘ve done your preprocessing right and extracted the right features." I shall show a few examples of how this runs counter to both the empirical reality and the spirit of what needs to be done to bring BCI into clinical application. Along the way I‘ll highlight some of the interesting problems that remain open for machine-learners.

ei

PDF Web Web [BibTex]

2009


PDF Web Web [BibTex]


no image
Efficient Subwindow Search: A Branch and Bound Framework for Object Localization

Lampert, C., Blaschko, M., Hofmann, T.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(12):2129-2142, December 2009 (article)

Abstract
Most successful object recognition systems rely on binary classification, deciding only if an object is present or not, but not providing information on the actual object location. To estimate the object‘s location, one can take a sliding window approach, but this strongly increases the computational cost because the classifier or similarity function has to be evaluated over a large set of candidate subwindows. In this paper, we propose a simple yet powerful branch and bound scheme that allows efficient maximization of a large class of quality functions over all possible subimages. It converges to a globally optimal solution typically in linear or even sublinear time, in contrast to the quadratic scaling of exhaustive or sliding window search. We show how our method is applicable to different object detection and image retrieval scenarios. The achieved speedup allows the use of classifiers for localization that formerly were considered too slow for this task, such as SVMs with a spatial pyramid kernel or nearest-neighbor classifiers based on the chi^2 distance. We demonstrate state-of-the-art localization performance of the resulting systems on the UIUC Cars data set, the PASCAL VOC 2006 data set, and in the PASCAL VOC 2007 competition.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
PAC-Bayesian Approach to Formulation of Clustering Objectives

Seldin, Y.

NIPS Workshop on "Clustering: Science or Art? Towards Principled Approaches", December 2009 (talk)

Abstract
Clustering is a widely used tool for exploratory data analysis. However, the theoretical understanding of clustering is very limited. We still do not have a well-founded answer to the seemingly simple question of "how many clusters are present in the data?", and furthermore a formal comparison of clusterings based on different optimization objectives is far beyond our abilities. The lack of good theoretical support gives rise to multiple heuristics that confuse the practitioners and stall development of the field. We suggest that the ill-posed nature of clustering problems is caused by the fact that clustering is often taken out of its subsequent application context. We argue that one does not cluster the data just for the sake of clustering it, but rather to facilitate the solution of some higher level task. By evaluation of the clustering‘s contribution to the solution of the higher level task it is possible to compare different clusterings, even those obtained by different optimization objectives. In the preceding work it was shown that such an approach can be applied to evaluation and design of co-clustering solutions. Here we suggest that this approach can be extended to other settings, where clustering is applied.

ei

PDF Web Web [BibTex]

PDF Web Web [BibTex]


no image
Generation of three-dimensional random rotations in fitting and matching problems

Habeck, M.

Computational Statistics, 24(4):719-731, December 2009 (article)

Abstract
An algorithm is developed to generate random rotations in three-dimensional space that follow a probability distribution arising in fitting and matching problems. The rotation matrices are orthogonally transformed into an optimal basis and then parameterized using Euler angles. The conditional distributions of the three Euler angles have a very simple form: the two azimuthal angles can be decoupled by sampling their sum and difference from a von Mises distribution; the cosine of the polar angle is exponentially distributed and thus straighforward to generate. Simulation results are shown and demonstrate the effectiveness of the method. The algorithm is compared to other methods for generating random rotations such as a random walk Metropolis scheme and a Gibbs sampling algorithm recently introduced by Green and Mardia. Finally, the algorithm is applied to a probabilistic version of the Procrustes problem of fitting two point sets and applied in the context of protein structure superposition.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Semi-supervised Kernel Canonical Correlation Analysis of Human Functional Magnetic Resonance Imaging Data

Shelton, JA.

Women in Machine Learning Workshop (WiML), December 2009 (talk)

Abstract
Kernel Canonical Correlation Analysis (KCCA) is a general technique for subspace learning that incorporates principal components analysis (PCA) and Fisher linear discriminant analysis (LDA) as special cases. By finding directions that maximize correlation, KCCA learns representations tied more closely to underlying process generating the the data and can ignore high-variance noise directions. However, for data where acquisition in a given modality is expensive or otherwise limited, KCCA may suffer from small sample effects. We propose to use semi-supervised Laplacian regularization to utilize data that are present in only one modality. This manifold learning approach is able to find highly correlated directions that also lie along the data manifold, resulting in a more robust estimate of correlated subspaces. Functional magnetic resonance imaging (fMRI) acquired data are naturally amenable to subspace techniques as data are well aligned and such data of the human brain are a particularly interesting candidate. In this study we implemented various supervised and semi-supervised versions of KCCA on human fMRI data, with regression to single and multivariate labels (corresponding to video content subjects viewed during the image acquisition). In each variate condition, Laplacian regularization improved performance whereas the semi-supervised variants of KCCA yielded the best performance. We additionally analyze the weights learned by the regression in order to infer brain regions that are important during different types of visual processing.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Adaptive Importance Sampling for Value Function Approximation in Off-policy Reinforcement Learning

Hachiya, H., Akiyama, T., Sugiyama, M., Peters, J.

Neural Networks, 22(10):1399-1410, December 2009 (article)

Abstract
Off-policy reinforcement learning is aimed at efficiently using data samples gathered from a policy that is different from the currently optimized policy. A common approach is to use importance sampling techniques for compensating for the bias of value function estimators caused by the difference between the data-sampling policy and the target policy. However, existing off-policy methods often do not take the variance of the value function estimators explicitly into account and therefore their performance tends to be unstable. To cope with this problem, we propose using an adaptive importance sampling technique which allows us to actively control the trade-off between bias and variance. We further provide a method for optimally determining the trade-off parameter based on a variant of cross-validation. We demonstrate the usefulness of the proposed approach through simulations.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Structured prediction by joint kernel support estimation

Lampert, CH., Blaschko, MB.

Machine Learning, 77(2-3):249-269, December 2009 (article)

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Guest editorial: special issue on structured prediction

Parker, C., Altun, Y., Tadepalli, P.

Machine Learning, 77(2-3):161-164, December 2009 (article)

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
A note on ethical aspects of BCI

Haselager, P., Vlek, R., Hill, J., Nijboer, F.

Neural Networks, 22(9):1352-1357, November 2009 (article)

Abstract
This paper focuses on ethical aspects of BCI, as a research and a clinical tool, that are challenging for practitioners currently working in the field. Specifically, the difficulties involved in acquiring informed consent from locked-in patients are investigated, in combination with an analysis of the shared moral responsibility in BCI teams, and the complications encountered in establishing effective communication with media.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Model Learning with Local Gaussian Process Regression

Nguyen-Tuong, D., Seeger, M., Peters, J.

Advanced Robotics, 23(15):2015-2034, November 2009 (article)

Abstract
Precise models of robot inverse dynamics allow the design of significantly more accurate, energy-efficient and compliant robot control. However, in some cases the accuracy of rigid-body models does not suffice for sound control performance due to unmodeled nonlinearities arising from hydraulic cable dynamics, complex friction or actuator dynamics. In such cases, estimating the inverse dynamics model from measured data poses an interesting alternative. Nonparametric regression methods, such as Gaussian process regression (GPR) or locally weighted projection regression (LWPR), are not as restrictive as parametric models and, thus, offer a more flexible framework for approximating unknown nonlinearities. In this paper, we propose a local approximation to the standard GPR, called local GPR (LGP), for real-time model online learning by combining the strengths of both regression methods, i.e., the high accuracy of GPR and the fast speed of LWPR. The approach is shown to have competitive learning performance for hig h-dimensional data while being sufficiently fast for real-time learning. The effectiveness of LGP is exhibited by a comparison with the state-of-the-art regression techniques, such as GPR, LWPR and ν-support vector regression. The applicability of the proposed LGP method is demonstrated by real-time online learning of the inverse dynamics model for robot model-based control on a Barrett WAM robot arm.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Event-Related Potentials in Brain-Computer Interfacing

Hill, NJ.

Invited lecture on the bachelor & masters course "Introduction to Brain-Computer Interfacing", October 2009 (talk)

Abstract
An introduction to event-related potentials with specific reference to their use in brain-computer interfacing applications and research.

ei

PDF [BibTex]

PDF [BibTex]


no image
BCI2000 and Python

Hill, NJ.

Invited lecture at the 5th International BCI2000 Workshop, October 2009 (talk)

Abstract
A tutorial, with exercises, on how to integrate your own Python code with the BCI2000 software package.

ei

PDF [BibTex]

PDF [BibTex]


no image
Implementing a Signal Processing Filter in BCI2000 Using C++

Hill, NJ., Mellinger, J.

Invited lecture at the 5th International BCI2000 Workshop, October 2009 (talk)

Abstract
This tutorial shows how the functionality of the BCI2000 software package can be extended with one‘s own code, using BCI2000‘s C++ API.

ei

PDF [BibTex]

PDF [BibTex]


no image
Inferring textual entailment with a probabilistically sound calculus

Harmeling, S.

Natural Language Engineering, 15(4):459-477, October 2009 (article)

Abstract
We introduce a system for textual entailment that is based on a probabilistic model of entailment. The model is defined using a calculus of transformations on dependency trees, which is characterized by the fact that derivations in that calculus preserve the truth only with a certain probability. The calculus is successfully evaluated on the datasets of the PASCAL Challenge on Recognizing Textual Entailment.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]