Header logo is


2016


no image
Contextual Policy Search for Linear and Nonlinear Generalization of a Humanoid Walking Controller

Abdolmaleki, A., Lau, N., Reis, L., Peters, J., Neumann, G.

Journal of Intelligent & Robotic Systems, 83(3-4):393-408, (Editors: Luis Almeida, Lino Marques ), September 2016, Special Issue: Autonomous Robot Systems (article)

ei

DOI [BibTex]

2016


DOI [BibTex]


no image
Acquiring and Generalizing the Embodiment Mapping from Human Observations to Robot Skills

Maeda, G., Ewerton, M., Koert, D., Peters, J.

IEEE Robotics and Automation Letters, 1(2):784-791, July 2016 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
On estimation of functional causal models: General results and application to post-nonlinear causal model

Zhang, K., Wang, Z., Zhang, J., Schölkopf, B.

ACM Transactions on Intelligent Systems and Technologies, 7(2):article no. 13, January 2016 (article)

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


Thumb xl cloud tracking
Gaussian Process-Based Predictive Control for Periodic Error Correction

Klenske, E. D., Zeilinger, M., Schölkopf, B., Hennig, P.

IEEE Transactions on Control Systems Technology , 24(1):110-121, 2016 (article)

ei pn

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Pymanopt: A Python Toolbox for Optimization on Manifolds using Automatic Differentiation

Townsend, J., Koep, N., Weichwald, S.

Journal of Machine Learning Research, 17(137):1-5, 2016 (article)

ei

PDF Arxiv Code Project page link (url) [BibTex]


no image
A Causal, Data-driven Approach to Modeling the Kepler Data

Wang, D., Hogg, D. W., Foreman-Mackey, D., Schölkopf, B.

Publications of the Astronomical Society of the Pacific, 128(967):094503, 2016 (article)

ei

link (url) DOI Project Page [BibTex]

link (url) DOI Project Page [BibTex]


no image
Probabilistic Inference for Determining Options in Reinforcement Learning

Daniel, C., van Hoof, H., Peters, J., Neumann, G.

Machine Learning, Special Issue, 104(2):337-357, (Editors: Gärtner, T., Nanni, M., Passerini, A. and Robardet, C.), European Conference on Machine Learning im Machine Learning, Journal Track, 2016, Best Student Paper Award of ECML-PKDD 2016 (article)

am ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Influence of initial fixation position in scene viewing

Rothkegel, L. O. M., Trukenbrod, H. A., Schütt, H. H., Wichmann, F. A., Engbert, R.

Vision Research, 129, pages: 33-49, 2016 (article)

ei

link (url) DOI Project Page [BibTex]

link (url) DOI Project Page [BibTex]


no image
Testing models of peripheral encoding using metamerism in an oddity paradigm

Wallis, T. S. A., Bethge, M., Wichmann, F. A.

Journal of Vision, 16(2), 2016 (article)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Modeling Confounding by Half-Sibling Regression

Schölkopf, B., Hogg, D., Wang, D., Foreman-Mackey, D., Janzing, D., Simon-Gabriel, C. J., Peters, J.

Proceedings of the National Academy of Science, 113(27):7391-7398, 2016 (article)

ei

Code link (url) DOI Project Page [BibTex]

Code link (url) DOI Project Page [BibTex]


Thumb xl dual control sampled b
Dual Control for Approximate Bayesian Reinforcement Learning

Klenske, E. D., Hennig, P.

Journal of Machine Learning Research, 17(127):1-30, 2016 (article)

ei pn

PDF link (url) [BibTex]

PDF link (url) [BibTex]


no image
A Population Based Gaussian Mixture Model Incorporating 18F-FDG-PET and DW-MRI Quantifies Tumor Tissue Classes

Divine, M. R., Katiyar, P., Kohlhofer, U., Quintanilla-Martinez, L., Disselhorst, J. A., Pichler, B. J.

Journal of Nuclear Medicine, 57(3):473-479, 2016 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Painfree and accurate Bayesian estimation of psychometric functions for (potentially) overdispersed data

Schütt, H. H., Harmeling, S., Macke, J. H., Wichmann, F. A.

Vision Research, 122, pages: 105-123, 2016 (article)

ei

link (url) DOI Project Page [BibTex]

link (url) DOI Project Page [BibTex]


no image
Hierarchical Relative Entropy Policy Search

Daniel, C., Neumann, G., Kroemer, O., Peters, J.

Journal of Machine Learning Research, 17(93):1-50, 2016 (article)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Kernel Mean Shrinkage Estimators

Muandet, K., Sriperumbudur, B., Fukumizu, K., Gretton, A., Schölkopf, B.

Journal of Machine Learning Research, 17(48):1-41, 2016 (article)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Learning to Deblur

Schuler, C. J., Hirsch, M., Harmeling, S., Schölkopf, B.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(7):1439-1451, IEEE, 2016 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Transfer Learning in Brain-Computer Interfaces

Jayaram, V., Alamgir, M., Altun, Y., Schölkopf, B., Grosse-Wentrup, M.

IEEE Computational Intelligence Magazine, 11(1):20-31, 2016 (article)

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
MERLiN: Mixture Effect Recovery in Linear Networks

Weichwald, S., Grosse-Wentrup, M., Gretton, A.

IEEE Journal of Selected Topics in Signal Processing, 10(7):1254-1266, 2016 (article)

ei

Arxiv Code PDF DOI Project Page [BibTex]

Arxiv Code PDF DOI Project Page [BibTex]


no image
Causal inference using invariant prediction: identification and confidence intervals

Peters, J., Bühlmann, P., Meinshausen, N.

Journal of the Royal Statistical Society, Series B (Statistical Methodology), 78(5):947-1012, 2016, (with discussion) (article)

ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Causal discovery and inference: concepts and recent methodological advances

Spirtes, P., Zhang, K.

Applied Informatics, 3(3):1-28, 2016 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Self-regulation of brain rhythms in the precuneus: a novel BCI paradigm for patients with ALS

Fomina, T., Lohmann, G., Erb, M., Ethofer, T., Schölkopf, B., Grosse-Wentrup, M.

Journal of Neural Engineering, 13(6):066021, 2016 (article)

ei

link (url) Project Page [BibTex]


no image
Influence Estimation and Maximization in Continuous-Time Diffusion Networks

Gomez-Rodriguez, M., Song, L., Du, N., Zha, H., Schölkopf, B.

ACM Transactions on Information Systems, 34(2):9:1-9:33, 2016 (article)

ei

DOI Project Page Project Page [BibTex]

DOI Project Page Project Page [BibTex]


no image
The population of long-period transiting exoplanets

Foreman-Mackey, D., Morton, T. D., Hogg, D. W., Agol, E., Schölkopf, B.

The Astronomical Journal, 152(6):206, 2016 (article)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
An overview of quantitative approaches in Gestalt perception

Jäkel, F., Singh, M., Wichmann, F. A., Herzog, M. H.

Vision Research, 126, pages: 3-8, 2016 (article)

ei

link (url) DOI Project Page [BibTex]

link (url) DOI Project Page [BibTex]


no image
Bootstrat: Population Informed Bootstrapping for Rare Variant Tests

Huang, H., Peloso, G. M., Howrigan, D., Rakitsch, B., Simon-Gabriel, C. J., Goldstein, J. I., Daly, M. J., Borgwardt, K., Neale, B. M.

bioRxiv, 2016, preprint (article)

ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Probabilistic Movement Models Show that Postural Control Precedes and Predicts Volitional Motor Control

Rueckert, E., Camernik, J., Peters, J., Babic, J.

Nature PG: Scientific Reports, 6(Article number: 28455), 2016 (article)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Learning Taxonomy Adaptation in Large-scale Classification

Babbar, R., Partalas, I., Gaussier, E., Amini, M., Amblard, C.

Journal of Machine Learning Research, 17(98):1-37, 2016 (article)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
BOiS—Berlin Object in Scene Database: Controlled Photographic Images for Visual Search Experiments with Quantified Contextual Priors

Mohr, J., Seyfarth, J., Lueschow, A., Weber, J. E., Wichmann, F. A., Obermayer, K.

Frontiers in Psychology, 2016 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Preface to the ACM TIST Special Issue on Causal Discovery and Inference

Zhang, K., Li, J., Bareinboim, E., Schölkopf, B., Pearl, J.

ACM Transactions on Intelligent Systems and Technologies, 7(2):article no. 17, 2016 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Recurrent Spiking Networks Solve Planning Tasks

Rueckert, E., Kappel, D., Tanneberg, D., Pecevski, D., Peters, J.

Nature PG: Scientific Reports, 6(Article number: 21142), 2016 (article)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Bio-inspired feedback-circuit implementation of discrete, free energy optimizing, winner-take-all computations

Genewein, T, Braun, DA

Biological Cybernetics, 110(2):135–150, June 2016 (article)

Abstract
Bayesian inference and bounded rational decision-making require the accumulation of evidence or utility, respectively, to transform a prior belief or strategy into a posterior probability distribution over hypotheses or actions. Crucially, this process cannot be simply realized by independent integrators, since the different hypotheses and actions also compete with each other. In continuous time, this competitive integration process can be described by a special case of the replicator equation. Here we investigate simple analog electric circuits that implement the underlying differential equation under the constraint that we only permit a limited set of building blocks that we regard as biologically interpretable, such as capacitors, resistors, voltage-dependent conductances and voltage- or current-controlled current and voltage sources. The appeal of these circuits is that they intrinsically perform normalization without requiring an explicit divisive normalization. However, even in idealized simulations, we find that these circuits are very sensitive to internal noise as they accumulate error over time. We discuss in how far neural circuits could implement these operations that might provide a generic competitive principle underlying both perception and action.

ei

DOI [BibTex]

DOI [BibTex]


no image
Decision-Making under Ambiguity Is Modulated by Visual Framing, but Not by Motor vs. Non-Motor Context: Experiments and an Information-Theoretic Ambiguity Model

Grau-Moya, J, Ortega, PA, Braun, DA

PLoS ONE, 11(4):1-21, April 2016 (article)

Abstract
A number of recent studies have investigated differences in human choice behavior depending on task framing, especially comparing economic decision-making to choice behavior in equivalent sensorimotor tasks. Here we test whether decision-making under ambiguity exhibits effects of task framing in motor vs. non-motor context. In a first experiment, we designed an experience-based urn task with varying degrees of ambiguity and an equivalent motor task where subjects chose between hitting partially occluded targets. In a second experiment, we controlled for the different stimulus design in the two tasks by introducing an urn task with bar stimuli matching those in the motor task. We found ambiguity attitudes to be mainly influenced by stimulus design. In particular, we found that the same subjects tended to be ambiguity-preferring when choosing between ambiguous bar stimuli, but ambiguity-avoiding when choosing between ambiguous urn sample stimuli. In contrast, subjects’ choice pattern was not affected by changing from a target hitting task to a non-motor context when keeping the stimulus design unchanged. In both tasks subjects’ choice behavior was continuously modulated by the degree of ambiguity. We show that this modulation of behavior can be explained by an information-theoretic model of ambiguity that generalizes Bayes-optimal decision-making by combining Bayesian inference with robust decision-making under model uncertainty. Our results demonstrate the benefits of information-theoretic models of decision-making under varying degrees of ambiguity for a given context, but also demonstrate the sensitivity of ambiguity attitudes across contexts that theoretical models struggle to explain.

ei

DOI [BibTex]

2006


no image
Structure validation of the Josephin domain of ataxin-3: Conclusive evidence for an open conformation

Nicastro, G., Habeck, M., Masino, L., Svergun, DI., Pastore, A.

Journal of Biomolecular NMR, 36(4):267-277, December 2006 (article)

Abstract
The availability of new and fast tools in structure determination has led to a more than exponential growth of the number of structures solved per year. It is therefore increasingly essential to assess the accuracy of the new structures by reliable approaches able to assist validation. Here, we discuss a specific example in which the use of different complementary techniques, which include Bayesian methods and small angle scattering, resulted essential for validating the two currently available structures of the Josephin domain of ataxin-3, a protein involved in the ubiquitin/proteasome pathway and responsible for neurodegenerative spinocerebellar ataxia of type 3. Taken together, our results demonstrate that only one of the two structures is compatible with the experimental information. Based on the high precision of our refined structure, we show that Josephin contains an open cleft which could be directly implicated in the interaction with polyubiquitin chains and other partners.

ei

Web DOI [BibTex]

2006


Web DOI [BibTex]


no image
A Unifying View of Wiener and Volterra Theory and Polynomial Kernel Regression

Franz, M., Schölkopf, B.

Neural Computation, 18(12):3097-3118, December 2006 (article)

Abstract
Volterra and Wiener series are perhaps the best understood nonlinear system representations in signal processing. Although both approaches have enjoyed a certain popularity in the past, their application has been limited to rather low-dimensional and weakly nonlinear systems due to the exponential growth of the number of terms that have to be estimated. We show that Volterra and Wiener series can be represented implicitly as elements of a reproducing kernel Hilbert space by utilizing polynomial kernels. The estimation complexity of the implicit representation is linear in the input dimensionality and independent of the degree of nonlinearity. Experiments show performance advantages in terms of convergence, interpretability, and system sizes that can be handled.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Statistical Analysis of Slow Crack Growth Experiments

Pfingsten, T., Glien, K.

Journal of the European Ceramic Society, 26(15):3061-3065, November 2006 (article)

Abstract
A common approach for the determination of Slow Crack Growth (SCG) parameters are the static and dynamic loading method. Since materials with small Weibull module show a large variability in strength, a correct statistical analysis of the data is indispensable. In this work we propose the use of the Maximum Likelihood method and a Baysian analysis, which, in contrast to the standard procedures, take into account that failure strengths are Weibull distributed. The analysis provides estimates for the SCG parameters, the Weibull module, and the corresponding confidence intervals and overcomes the necessity of manual differentiation between inert and fatigue strength data. We compare the methods to a Least Squares approach, which can be considered the standard procedure. The results for dynamic loading data from the glass sealing of MEMS devices show that the assumptions inherent to the standard approach lead to significantly different estimates.

ei

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


no image
Mining frequent stem patterns from unaligned RNA sequences

Hamada, M., Tsuda, K., Kudo, T., Kin, T., Asai, K.

Bioinformatics, 22(20):2480-2487, October 2006 (article)

Abstract
Motivation: In detection of non-coding RNAs, it is often necessary to identify the secondary structure motifs from a set of putative RNA sequences. Most of the existing algorithms aim to provide the best motif or few good motifs, but biologists often need to inspect all the possible motifs thoroughly. Results: Our method RNAmine employs a graph theoretic representation of RNA sequences, and detects all the possible motifs exhaustively using a graph mining algorithm. The motif detection problem boils down to finding frequently appearing patterns in a set of directed and labeled graphs. In the tasks of common secondary structure prediction and local motif detection from long sequences, our method performed favorably both in accuracy and in efficiency with the state-of-the-art methods such as CMFinder.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Large-Scale Gene Expression Profiling Reveals Major Pathogenetic Pathways of Cartilage Degeneration in Osteoarthritis

Aigner, T., Fundel, K., Saas, J., Gebhard, P., Haag, J., Weiss, T., Zien, A., Obermayr, F., Zimmer, R., Bartnik, E.

Arthritis and Rheumatism, 54(11):3533-3544, October 2006 (article)

Abstract
Objective. Despite many research efforts in recent decades, the major pathogenetic mechanisms of osteo- arthritis (OA), including gene alterations occurring during OA cartilage degeneration, are poorly under- stood, and there is no disease-modifying treatment approach. The present study was therefore initiated in order to identify differentially expressed disease-related genes and potential therapeutic targets. Methods. This investigation consisted of a large gene expression profiling study performed based on 78 normal and disease samples, using a custom-made complementar y DNA array covering >4,000 genes. Results. Many differentially expressed genes were identified, including the expected up-regulation of ana- bolic and catabolic matrix genes. In particular, the down-regulation of important oxidative defense genes, i.e., the genes for superoxide dismutases 2 and 3 and glutathione peroxidase 3, was prominent. This indicates that continuous oxidative stress to the cells and the matrix is one major underlying pathogenetic mecha- nism in OA. Also, genes that are involved in the phenot ypic stabilit y of cells, a feature that is greatly reduced in OA cartilage, appeared to be suppressed. Conclusion. Our findings provide a reference data set on gene alterations in OA cartilage and, importantly, indicate major mechanisms underlying central cell bio- logic alterations that occur during the OA disease process. These results identify molecular targets that can be further investigated in the search for therapeutic interventions.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Implicit Surface Modelling with a Globally Regularised Basis of Compact Support

Walder, C., Schölkopf, B., Chapelle, O.

Computer Graphics Forum, 25(3):635-644, September 2006 (article)

Abstract
We consider the problem of constructing a globally smooth analytic function that represents a surface implicitly by way of its zero set, given sample points with surface normal vectors. The contributions of the paper include a novel means of regularising multi-scale compactly supported basis functions that leads to the desirable interpolation properties previously only associated with fully supported bases. We also provide a regularisation framework for simpler and more direct treatment of surface normals, along with a corresponding generalisation of the representer theorem lying at the core of kernel-based machine learning methods. We demonstrate the techniques on 3D problems of up to 14 million data points, as well as 4D time series data and four-dimensional interpolation between three-dimensional shapes.

ei

PDF GZIP DOI [BibTex]


no image
An Online Support Vector Machine for Abnormal Events Detection

Davy, M., Desobry, F., Gretton, A., Doncarli, C.

Signal Processing, 86(8):2009-2025, August 2006 (article)

Abstract
The ability to detect online abnormal events in signals is essential in many real-world Signal Processing applications. Previous algorithms require an explicit signal statistical model, and interpret abnormal events as statistical model abrupt changes. Corresponding implementation relies on maximum likelihood or on Bayes estimation theory with generally excellent performance. However, there are numerous cases where a robust and tractable model cannot be obtained, and model-free approaches need to be considered. In this paper, we investigate a machine learning, descriptor-based approach that does not require an explicit descriptors statistical model, based on Support Vector novelty detection. A sequential optimization algorithm is introduced. Theoretical considerations as well as simulations on real signals demonstrate its practical efficiency.

ei

PDF PostScript PDF DOI [BibTex]

PDF PostScript PDF DOI [BibTex]


no image
Integrating Structured Biological data by Kernel Maximum Mean Discrepancy

Borgwardt, K., Gretton, A., Rasch, M., Kriegel, H., Schölkopf, B., Smola, A.

Bioinformatics, 22(4: ISMB 2006 Conference Proceedings):e49-e57, August 2006 (article)

Abstract
Motivation: Many problems in data integration in bioinformatics can be posed as one common question: Are two sets of observations generated by the same distribution? We propose a kernel-based statistical test for this problem, based on the fact that two distributions are different if and only if there exists at least one function having different expectation on the two distributions. Consequently we use the maximum discrepancy between function means as the basis of a test statistic. The Maximum Mean Discrepancy (MMD) can take advantage of the kernel trick, which allows us to apply it not only to vectors, but strings, sequences, graphs, and other common structured data types arising in molecular biology. Results: We study the practical feasibility of an MMD-based test on three central data integration tasks: Testing cross-platform comparability of microarray data, cancer diagnosis, and data-content based schema matching for two different protein function classification schemas. In all of these experiments, including high-dimensional ones, MMD is very accurate in finding samples that were generated from the same distribution, and outperforms its best competitors. Conclusions: We have defined a novel statistical test of whether two samples are from the same distribution, compatible with both multivariate and structured data, that is fast, easy to implement, and works well, as confirmed by our experiments.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Large Scale Transductive SVMs

Collobert, R., Sinz, F., Weston, J., Bottou, L.

Journal of Machine Learning Research, 7, pages: 1687-1712, August 2006 (article)

Abstract
We show how the Concave-Convex Procedure can be applied to the optimization of Transductive SVMs, which traditionally requires solving a combinatorial search problem. This provides for the first time a highly scalable algorithm in the nonlinear case. Detailed experiments verify the utility of our approach.

ei

PostScript PDF PDF [BibTex]

PostScript PDF PDF [BibTex]


no image
Building Support Vector Machines with Reduced Classifier Complexity

Keerthi, S., Chapelle, O., DeCoste, D.

Journal of Machine Learning Research, 7, pages: 1493-1515, July 2006 (article)

Abstract
Support vector machines (SVMs), though accurate, are not preferred in applications requiring great classification speed, due to the number of support vectors being large. To overcome this problem we devise a primal method with the following properties: (1) it decouples the idea of basis functions from the concept of support vectors; (2) it greedily finds a set of kernel basis functions of a specified maximum size ($dmax$) to approximate the SVM primal cost function well; (3) it is efficient and roughly scales as $O(ndmax^2)$ where $n$ is the number of training examples; and, (4) the number of basis functions it requires to achieve an accuracy close to the SVM accuracy is usually far less than the number of SVM support vectors.

ei

PDF [BibTex]

PDF [BibTex]


no image
ARTS: Accurate Recognition of Transcription Starts in Human

Sonnenburg, S., Zien, A., Rätsch, G.

Bioinformatics, 22(14):e472-e480, July 2006 (article)

Abstract
Motivation: One of the most important features of genomic DNA are the protein-coding genes. While it is of great value to identify those genes and the encoded proteins, it is also crucial to understand how their transcription is regulated. To this end one has to identify the corresponding promoters and the contained transcription factor binding sites. TSS finders can be used to locate potential promoters. They may also be used in combination with other signal and content detectors to resolve entire gene structures. Results: We have developed a novel kernel based method - called ARTS - that accurately recognizes transcription start sites in human. The application of otherwise too computationally expensive Support Vector Machines was made possible due to the use of efficient training and evaluation techniques using suffix tries. In a carefully designed experimental study, we compare our TSS finder to state-of-the-art methods from the literature: McPromoter, Eponine and FirstEF. For given false positive rates within a reasonable range, we consistently achieve considerably higher true positive rates. For instance, ARTS finds about 24% true positives at a false positive rate of 1/1000, where the other methods find less than half (10.5%). Availability: Datasets, model selection results, whole genome predictions, and additional experimental results are available at http://www.fml.tuebingen.mpg.de/raetsch/projects/arts

ei

Web DOI [BibTex]

Web DOI [BibTex]