Header logo is


2015


no image
Quantifying changes in climate variability and extremes: Pitfalls and their overcoming

Sippel, S., Zscheischler, J., Heimann, M., Otto, F. E. L., Peters, J., Mahecha, M. D.

Geophysical Research Letters, 42(22):9990-9998, November 2015 (article)

ei

DOI [BibTex]

2015


DOI [BibTex]


no image
Diversity of sharp wave-ripple LFP signatures reveals differentiated brain-wide dynamical events

Ramirez-Villegas, J. F., Logothetis, N. K., Besserve, M.

Proceedings of the National Academy of Sciences U.S.A, 112(46):E6379-E6387, November 2015 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Noise masking of White’s illusion exposes the weakness of current spatial filtering models of lightness perception

Betz, T., Shapley, R. M., Wichmann, F. A., Maertens, M.

Journal of Vision, 15(14):1-17, October 2015 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Causal Inference for Empirical Time Series Based on the Postulate of Independence of Cause and Mechanism

Besserve, M.

53rd Annual Allerton Conference on Communication, Control, and Computing, September 2015 (talk)

ei

[BibTex]

[BibTex]


no image
Shifts of Gamma Phase across Primary Visual Cortical Sites Reflect Dynamic Stimulus-Modulated Information Transfer

Besserve, M., Lowe, S. C., Logothetis, N. K., Schölkopf, B., Panzeri, S.

PLOS Biology, 13(9):e1002257, September 2015 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Semi-Supervised Interpolation in an Anticausal Learning Scenario

Janzing, D., Schölkopf, B.

Journal of Machine Learning Research, 16, pages: 1923-1948, September 2015 (article)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Testing the role of luminance edges in White’s illusion with contour adaptation

Betz, T., Shapley, R. M., Wichmann, F. A., Maertens, M.

Journal of Vision, 15(11):1-16, August 2015 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Independence of cause and mechanism in brain networks

Besserve, M.

DALI workshop on Networks: Processes and Causality, April 2015 (talk)

ei

[BibTex]

[BibTex]


no image
Blind multirigid retrospective motion correction of MR images

Loktyushin, A., Nickisch, H., Pohmann, R., Schölkopf, B.

Magnetic Resonance in Medicine, 73(4):1457-1468, April 2015 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
A quantum advantage for inferring causal structure

Ried, K., Agnew, M., Vermeyden, L., Janzing, D., Spekkens, R. W., Resch, K. J.

Nature Physics, 11(5):414-420, March 2015 (article)

Abstract
The problem of inferring causal relations from observed correlations is relevant to a wide variety of scientific disciplines. Yet given the correlations between just two classical variables, it is impossible to determine whether they arose from a causal influence of one on the other or a common cause influencing both. Only a randomized trial can settle the issue. Here we consider the problem of causal inference for quantum variables. We show that the analogue of a randomized trial, causal tomography, yields a complete solution. We also show that, in contrast to the classical case, one can sometimes infer the causal structure from observations alone. We implement a quantum-optical experiment wherein we control the causal relation between two optical modes, and two measurement schemes—with and without randomization—that extract this relation from the observed correlations. Our results show that entanglement and quantum coherence provide an advantage for causal inference.

ei

DOI [BibTex]

DOI [BibTex]


no image
Positive definite matrices and the S-divergence

Sra, S.

Proceedings of the American Mathematical Society, 2015, Published electronically: October 22, 2015 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Structural Intervention Distance (SID) for Evaluating Causal Graphs

Peters, J., Bühlmann, P.

Neural Computation , 27(3):771-799, 2015 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Likelihood and Consilience: On Forster’s Counterexamples to the Likelihood Theory of Evidence

Zhang, J., Zhang, K.

Philosophy of Science, Supplementary Volume 2015, 82(5):930-940, 2015 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Information-Theoretic Implications of Classical and Quantum Causal Structures

Chaves, R., Majenz, C., Luft, L., Maciel, T., Janzing, D., Schölkopf, B., Gross, D.

18th Conference on Quantum Information Processing (QIP), 2015 (talk)

ei

Web link (url) [BibTex]

Web link (url) [BibTex]


no image
Crowdsourced analysis of clinical trial data to predict amyotrophic lateral sclerosis progression

Küffner, R., Zach, N., Norel, R., Hawe, J., Schoenfeld, D., Wang, L., Li, G., Fang, L., Mackey, L., Hardiman, O., Cudkowicz, M., Sherman, A., Ertaylan, G., Grosse-Wentrup, M., Hothorn, T., van Ligtenberg, J., Macke, J., Meyer, T., Schölkopf, B., Tran, L., Vaughan, R., Stolovitzky, G., Leitner, M.

Nature Biotechnology, 33, pages: 51-57, 2015 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Probabilistic Interpretation of Linear Solvers

Hennig, P.

SIAM Journal on Optimization, 25(1):234-260, 2015 (article)

ei pn

Web PDF link (url) DOI [BibTex]

Web PDF link (url) DOI [BibTex]


no image
Developing biorobotics for veterinary research into cat movements

Mariti, C., Muscolo, G., Peters, J., Puig, D., Recchiuto, C., Sighieri, C., Solanas, A., von Stryk, O.

Journal of Veterinary Behavior: Clinical Applications and Research, 10(3):248-254, 2015 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Spatial statistics and attentional dynamics in scene viewing

Engbert, R., Trukenbrod, H., Barthelmé, S., Wichmann, F.

Journal of Vision, 15(1):1-17, 2015 (article)

ei

Web PDF link (url) DOI [BibTex]

Web PDF link (url) DOI [BibTex]


no image
The Randomized Causation Coefficient

Lopez-Paz, D., Muandet, K., Recht, B.

Journal of Machine Learning, 16, pages: 2901-2907, 2015 (article)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Towards denoising XMCD movies of fast magnetization dynamics using extended Kalman filter

Kopp, M., Harmeling, S., Schütz, G., Schölkopf, B., Fähnle, M.

Ultramicroscopy, 148, pages: 115-122, 2015 (article)

Abstract
The Kalman filter is a well-established approach to get information on the time-dependent state of a system from noisy observations. It was developed in the context of the Apollo project to see the deviation of the true trajectory of a rocket from the desired trajectory. Afterwards it was applied to many different systems with small numbers of components of the respective state vector (typically about 10). In all cases the equation of motion for the state vector was known exactly. The fast dissipative magnetization dynamics is often investigated by x-ray magnetic circular dichroism movies (XMCD movies), which are often very noisy. In this situation the number of components of the state vector is extremely large (about 105), and the equation of motion for the dissipative magnetization dynamics (especially the values of the material parameters of this equation) is not well known. In the present paper it is shown by theoretical considerations that – nevertheless – there is no principle problem for the use of the Kalman filter to denoise XMCD movies of fast dissipative magnetization dynamics.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Artificial intelligence: Learning to see and act

Schölkopf, B.

Nature, News & Views, 518(7540):486-487, 2015 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Context affects lightness at the level of surfaces

Maertens, M., Wichmann, F., Shapley, R.

Journal of Vision, 15(1):1-15, 2015 (article)

ei

Web PDF link (url) DOI [BibTex]

Web PDF link (url) DOI [BibTex]


no image
Genome-wide analysis of local chromatin packing in Arabidopsis thaliana

Wang, C., Liu, C., Roqueiro, D., Grimm, D., Schwab, R., Becker, C., Lanz, C., Weigel, D.

Genome Research, 25(2):246-256, 2015 (article)

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Segmentation-based attenuation correction in positron emission tomography/magnetic resonance: erroneous tissue identification and its impact on positron emission tomography interpretation

Brendle, C., Schmidt, H., Oergel, A., Bezrukov, I., Mueller, M., Schraml, C., Pfannenberg, C., la Fougère, C., Nikolaou, K., Schwenzer, N.

Investigative Radiology, 50(5):339-346, 2015 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Active Reward Learning with a Novel Acquisition Function

Daniel, C., Kroemer, O., Viering, M., Metz, J., Peters, J.

Autonomous Robots, 39(3):389-405, 2015 (article)

am ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
A systematic search for transiting planets in the K2 data

Foreman-Mackey, D., Montet, B., Hogg, D., Morton, T., Wang, D., Schölkopf, B.

The Astrophysical Journal, 806(2), 2015 (article)

Abstract
Photometry of stars from the K2 extension of NASA’s Kepler mission is afflicted by systematic effects caused by small (few-pixel) drifts in the telescope pointing and other spacecraft issues. We present a method for searching K2 light curves for evidence of exoplanets by simultaneously fitting for these systematics and the transit signals of interest. This method is more computationally expensive than standard search algorithms but we demonstrate that it can be efficiently implemented and used to discover transit signals. We apply this method to the full Campaign 1 data set and report a list of 36 planet candidates transiting 31 stars, along with an analysis of the pipeline performance and detection efficiency based on artificial signal injections and recoveries. For all planet candidates, we present posterior distributions on the properties of each system based strictly on the transit observables.

ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Learning Movement Primitive Attractor Goals and Sequential Skills from Kinesthetic Demonstrations

Manschitz, S., Kober, J., Gienger, M., Peters, J.

Robotics and Autonomous Systems, 74, Part A, pages: 97-107, 2015 (article)

am ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Bayesian Optimization for Learning Gaits under Uncertainty

Calandra, R., Seyfarth, A., Peters, J., Deisenroth, M.

Annals of Mathematics and Artificial Intelligence, pages: 1-19, 2015 (article)

am ei

DOI [BibTex]

DOI [BibTex]


no image
Assessment of murine brain tissue shrinkage caused by different histological fixatives using magnetic resonance and computed tomography imaging

Wehrl, H. F., Bezrukov, I., Wiehr, S., Lehnhoff, M., Fuchs, K., Mannheim, J. G., Quintanilla-Martinez, L., Kneilling, M., Pichler, B. J., Sauter, A. W.

Histology and Histopathology, 30(5):601-613, 2015 (article)

ei

[BibTex]

[BibTex]


no image
Improved Bayesian Information Criterion for Mixture Model Selection

Mehrjou, A., Hosseini, R., Araabi, B.

Pattern Recognition Letters, 69, pages: 22-27, 2015 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Correlation matrix nearness and completion under observation uncertainty

Alaíz, C. M., Dinuzzo, F., Sra, S.

IMA Journal of Numerical Analysis, 35(1):325-340, 2015 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Quantitative evaluation of segmentation- and atlas- based attenuation correction for PET/MR on pediatric patients

Bezrukov, I., Schmidt, H., Gatidis, S., Mantlik, F., Schäfer, J. F., Schwenzer, N., Pichler, B. J.

Journal of Nuclear Medicine, 56(7):1067-1074, 2015 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Probabilistic numerics and uncertainty in computations

Hennig, P., Osborne, M. A., Girolami, M.

Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 471(2179), 2015 (article)

Abstract
We deliver a call to arms for probabilistic numerical methods: algorithms for numerical tasks, including linear algebra, integration, optimization and solving differential equations, that return uncertainties in their calculations. Such uncertainties, arising from the loss of precision induced by numerical calculation with limited time or hardware, are important for much contemporary science and industry. Within applications such as climate science and astrophysics, the need to make decisions on the basis of computations with large and complex data have led to a renewed focus on the management of numerical uncertainty. We describe how several seminal classic numerical methods can be interpreted naturally as probabilistic inference. We then show that the probabilistic view suggests new algorithms that can flexibly be adapted to suit application specifics, while delivering improved empirical performance. We provide concrete illustrations of the benefits of probabilistic numeric algorithms on real scientific problems from astrometry and astronomical imaging, while highlighting open problems with these new algorithms. Finally, we describe how probabilistic numerical methods provide a coherent framework for identifying the uncertainty in calculations performed with a combination of numerical algorithms (e.g. both numerical optimizers and differential equation solvers), potentially allowing the diagnosis (and control) of error sources in computations.

ei pn

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Mass and galaxy distributions of four massive galaxy clusters from Dark Energy Survey Science Verification data

Melchior, P., Suchyta, E., Huff, E., Hirsch, M., Kacprzak, T., Rykoff, E., Gruen, D., Armstrong, R., Bacon, D., Bechtol, K., others,

Monthly Notices of the Royal Astronomical Society, 449(3):2219-2238, Oxford University Press, 2015 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
The search for single exoplanet transits in the Kepler light curves

Foreman-Mackey, D., Hogg, D. W., Schölkopf, B.

IAU General Assembly, 22, pages: 2258352, 2015 (talk)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Entropic Movement Complexity Reflects Subjective Creativity Rankings of Visualized Hand Motion Trajectories

Peng, Z, Braun, DA

Frontiers in Psychology, 6(1879):1-13, December 2015 (article)

Abstract
In a previous study we have shown that human motion trajectories can be characterized by translating continuous trajectories into symbol sequences with well-defined complexity measures. Here we test the hypothesis that the motion complexity individuals generate in their movements might be correlated to the degree of creativity assigned by a human observer to the visualized motion trajectories. We asked participants to generate 55 novel hand movement patterns in virtual reality, where each pattern had to be repeated 10 times in a row to ensure reproducibility. This allowed us to estimate a probability distribution over trajectories for each pattern. We assessed motion complexity not only by the previously proposed complexity measures on symbolic sequences, but we also propose two novel complexity measures that can be directly applied to the distributions over trajectories based on the frameworks of Gaussian Processes and Probabilistic Movement Primitives. In contrast to previous studies, these new methods allow computing complexities of individual motion patterns from very few sample trajectories. We compared the different complexity measures to how a group of independent jurors rank ordered the recorded motion trajectories according to their personal creativity judgment. We found three entropic complexity measures that correlate significantly with human creativity judgment and discuss differences between the measures. We also test whether these complexity measures correlate with individual creativity in divergent thinking tasks, but do not find any consistent correlation. Our results suggest that entropic complexity measures of hand motion may reveal domain-specific individual differences in kinesthetic creativity.

ei

DOI [BibTex]

DOI [BibTex]


no image
Bounded rationality, abstraction and hierarchical decision-making: an information-theoretic optimality principle

Genewein, T, Leibfried, F, Grau-Moya, J, Braun, DA

Frontiers in Robotics and AI, 2(27):1-24, October 2015 (article)

Abstract
Abstraction and hierarchical information-processing are hallmarks of human and animal intelligence underlying the unrivaled flexibility of behavior in biological systems. Achieving such a flexibility in artificial systems is challenging, even with more and more computational power. Here we investigate the hypothesis that abstraction and hierarchical information-processing might in fact be the consequence of limitations in information-processing power. In particular, we study an information-theoretic framework of bounded rational decision-making that trades off utility maximization against information-processing costs. We apply the basic principle of this framework to perception-action systems with multiple information-processing nodes and derive bounded optimal solutions. We show how the formation of abstractions and decision-making hierarchies depends on information-processing costs. We illustrate the theoretical ideas with example simulations and conclude by formalizing a mathematically unifying optimization principle that could potentially be extended to more complex systems.

ei

DOI [BibTex]

DOI [BibTex]


no image
Signaling equilibria in sensorimotor interactions

Leibfried, F, Grau-Moya, J, Braun, DA

Cognition, 141, pages: 73-86, August 2015 (article)

Abstract
Although complex forms of communication like human language are often assumed to have evolved out of more simple forms of sensorimotor signaling, less attention has been devoted to investigate the latter. Here, we study communicative sensorimotor behavior of humans in a two-person joint motor task where each player controls one dimension of a planar motion. We designed this joint task as a game where one player (the sender) possesses private information about a hidden target the other player (the receiver) wants to know about, and where the sender's actions are costly signals that influence the receiver's control strategy. We developed a game-theoretic model within the framework of signaling games to investigate whether subjects' behavior could be adequately described by the corresponding equilibrium solutions. The model predicts both separating and pooling equilibria, in which signaling does and does not occur respectively. We observed both kinds of equilibria in subjects and found that, in line with model predictions, the propensity of signaling decreased with increasing signaling costs and decreasing uncertainty on the part of the receiver. Our study demonstrates that signaling games, which have previously been applied to economic decision-making and animal communication, provide a framework for human signaling behavior arising during sensorimotor interactions in continuous and dynamic environments.

ei

DOI [BibTex]

DOI [BibTex]


no image
Structure Learning in Bayesian Sensorimotor Integration

Genewein, T, Hez, E, Razzaghpanah, Z, Braun, DA

PLoS Computational Biology, 11(8):1-27, August 2015 (article)

Abstract
Previous studies have shown that sensorimotor processing can often be described by Bayesian learning, in particular the integration of prior and feedback information depending on its degree of reliability. Here we test the hypothesis that the integration process itself can be tuned to the statistical structure of the environment. We exposed human participants to a reaching task in a three-dimensional virtual reality environment where we could displace the visual feedback of their hand position in a two dimensional plane. When introducing statistical structure between the two dimensions of the displacement, we found that over the course of several days participants adapted their feedback integration process in order to exploit this structure for performance improvement. In control experiments we found that this adaptation process critically depended on performance feedback and could not be induced by verbal instructions. Our results suggest that structural learning is an important meta-learning component of Bayesian sensorimotor integration.

ei

DOI [BibTex]

DOI [BibTex]


no image
A Reward-Maximizing Spiking Neuron as a Bounded Rational Decision Maker

Leibfried, F, Braun, DA

Neural Computation, 27(8):1686-1720, July 2015 (article)

Abstract
Rate distortion theory describes how to communicate relevant information most efficiently over a channel with limited capacity. One of the many applications of rate distortion theory is bounded rational decision making, where decision makers are modeled as information channels that transform sensory input into motor output under the constraint that their channel capacity is limited. Such a bounded rational decision maker can be thought to optimize an objective function that trades off the decision maker's utility or cumulative reward against the information processing cost measured by the mutual information between sensory input and motor output. In this study, we interpret a spiking neuron as a bounded rational decision maker that aims to maximize its expected reward under the computational constraint that the mutual information between the neuron's input and output is upper bounded. This abstract computational constraint translates into a penalization of the deviation between the neuron's instantaneous and average firing behavior. We derive a synaptic weight update rule for such a rate distortion optimizing neuron and show in simulations that the neuron efficiently extracts reward-relevant information from the input by trading off its synaptic strengths against the collected reward.

ei

DOI [BibTex]

DOI [BibTex]


no image
What is epistemic value in free energy models of learning and acting? A bounded rationality perspective

Ortega, PA, Braun, DA

Cognitive Neuroscience, 6(4):215-216, December 2015 (article)

Abstract
Free energy models of learning and acting do not only care about utility or extrinsic value, but also about intrinsic value, that is, the information value stemming from probability distributions that represent beliefs or strategies. While these intrinsic values can be interpreted as epistemic values or exploration bonuses under certain conditions, the framework of bounded rationality offers a complementary interpretation in terms of information-processing costs that we discuss here.

ei

DOI [BibTex]

DOI [BibTex]

2005


no image
Kernel Methods for Measuring Independence

Gretton, A., Herbrich, R., Smola, A., Bousquet, O., Schölkopf, B.

Journal of Machine Learning Research, 6, pages: 2075-2129, December 2005 (article)

Abstract
We introduce two new functionals, the constrained covariance and the kernel mutual information, to measure the degree of independence of random variables. These quantities are both based on the covariance between functions of the random variables in reproducing kernel Hilbert spaces (RKHSs). We prove that when the RKHSs are universal, both functionals are zero if and only if the random variables are pairwise independent. We also show that the kernel mutual information is an upper bound near independence on the Parzen window estimate of the mutual information. Analogous results apply for two correlation-based dependence functionals introduced earlier: we show the kernel canonical correlation and the kernel generalised variance to be independence measures for universal kernels, and prove the latter to be an upper bound on the mutual information near independence. The performance of the kernel dependence functionals in measuring independence is verified in the context of independent component analysis.

ei

PDF PostScript PDF [BibTex]

2005


PDF PostScript PDF [BibTex]


no image
Some thoughts about Gaussian Processes

Chapelle, O.

NIPS Workshop on Open Problems in Gaussian Processes for Machine Learning, December 2005 (talk)

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
A Unifying View of Sparse Approximate Gaussian Process Regression

Quinonero Candela, J., Rasmussen, C.

Journal of Machine Learning Research, 6, pages: 1935-1959, December 2005 (article)

Abstract
We provide a new unifying view, including all existing proper probabilistic sparse approximations for Gaussian process regression. Our approach relies on expressing the effective prior which the methods are using. This allows new insights to be gained, and highlights the relationship between existing methods. It also allows for a clear theoretically justified ranking of the closeness of the known approximations to the corresponding full GPs. Finally we point directly to designs of new better sparse approximations, combining the best of the existing strategies, within attractive computational constraints.

ei

PDF [BibTex]

PDF [BibTex]


no image
Maximal Margin Classification for Metric Spaces

Hein, M., Bousquet, O., Schölkopf, B.

Journal of Computer and System Sciences, 71(3):333-359, October 2005 (article)

Abstract
In order to apply the maximum margin method in arbitrary metric spaces, we suggest to embed the metric space into a Banach or Hilbert space and to perform linear classification in this space. We propose several embeddings and recall that an isometric embedding in a Banach space is always possible while an isometric embedding in a Hilbert space is only possible for certain metric spaces. As a result, we obtain a general maximum margin classification algorithm for arbitrary metric spaces (whose solution is approximated by an algorithm of Graepel. Interestingly enough, the embedding approach, when applied to a metric which can be embedded into a Hilbert space, yields the SVM algorithm, which emphasizes the fact that its solution depends on the metric and not on the kernel. Furthermore we give upper bounds of the capacity of the function classes corresponding to both embeddings in terms of Rademacher averages. Finally we compare the capacities of these function classes directly.

ei

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


no image
Selective integration of multiple biological data for supervised network inference

Kato, T., Tsuda, K., Asai, K.

Bioinformatics, 21(10):2488 , October 2005 (article)

ei

PDF [BibTex]

PDF [BibTex]