Header logo is


2017


no image
Self-Organized Behavior Generation for Musculoskeletal Robots

Der, R., Martius, G.

Frontiers in Neurorobotics, 11, pages: 8, 2017 (article)

al

link (url) DOI [BibTex]

2017


link (url) DOI [BibTex]

2014


no image
Self-Exploration of the Stumpy Robot with Predictive Information Maximization

Martius, G., Jahn, L., Hauser, H., V. Hafner, V.

In Proc. From Animals to Animats, SAB 2014, 8575, pages: 32-42, LNCS, Springer, 2014 (inproceedings)

al

[BibTex]

2014


[BibTex]


no image
Robot Learning by Guided Self-Organization

Martius, G., Der, R., Herrmann, J. M.

In Guided Self-Organization: Inception, 9, pages: 223-260, Emergence, Complexity and Computation, Springer Berlin Heidelberg, 2014 (incollection)

al

link (url) DOI [BibTex]

link (url) DOI [BibTex]

2010


no image
Goal-Oriented Control of Self-Organizing Behavior in Autonomous Robots

Martius, G.

Georg-August-Universität Göttingen, 2010 (phdthesis)

al

link (url) [BibTex]

2010



no image
\textscLpzRobots: A free and powerful robot simulator

Martius, G., Hesse, F., Güttler, F., Der, R.

\urlhttp://robot.informatik.uni-leipzig.de/software, 2010 (misc)

al

[BibTex]

[BibTex]


no image
Playful Machines: Tutorial

Der, R., Martius, G.

\urlhttp://robot.informatik.uni-leipzig.de/tutorial?lang=en, 2010 (misc)

al

[BibTex]

[BibTex]


no image
Taming the Beast: Guided Self-organization of Behavior in Autonomous Robots

Martius, G., Herrmann, J. M.

In From Animals to Animats 11, 6226, pages: 50-61, LNCS, Springer, 2010 (incollection)

al

link (url) DOI [BibTex]

link (url) DOI [BibTex]

2009


no image
A Sensor-Based Learning Algorithm for the Self-Organization of Robot Behavior

Hesse, F., Martius, G., Der, R., Herrmann, J. M.

Algorithms, 2(1):398-409, 2009 (article)

Abstract
Ideally, sensory information forms the only source of information to a robot. We consider an algorithm for the self-organization of a controller. At short timescales the controller is merely reactive but the parameter dynamics and the acquisition of knowledge by an internal model lead to seemingly purposeful behavior on longer timescales. As a paradigmatic example, we study the simulation of an underactuated snake-like robot. By interacting with the real physical system formed by the robotic hardware and the environment, the controller achieves a sensitive and body-specific actuation of the robot.

al

link (url) [BibTex]

2009


link (url) [BibTex]

2007


no image
Guided Self-organisation for Autonomous Robot Development

Martius, G., Herrmann, J. M., Der, R.

In Advances in Artificial Life 9th European Conference, ECAL 2007, 4648, pages: 766-775, LNCS, Springer, 2007 (inproceedings)

al

[BibTex]

2007


[BibTex]

2005


no image
Learning to Feel the Physics of a Body

Der, R., Hesse, F., Martius, G.

In Computational Intelligence for Modelling, Control and Automation, CIMCA 2005 , 2, pages: 252-257, Washington, DC, USA, 2005 (inproceedings)

Abstract
Despite the tremendous progress in robotic hardware and in both sensorial and computing efficiencies the performance of contemporary autonomous robots is still far below that of simple animals. This has triggered an intensive search for alternative approaches to the control of robots. The present paper exemplifies a general approach to the self-organization of behavior which has been developed and tested in various examples in recent years. We apply this approach to an underactuated snake like artifact with a complex physical behavior which is not known to the controller. Due to the weak forces available, the controller so to say has to develop a kind of feeling for the body which is seen to emerge from our approach in a natural way with meandering and rotational collective modes being observed in computer simulation experiments.

al

[BibTex]

2005


[BibTex]