Header logo is


2015


no image
Real-Time Object Detection, Localization and Verification for Fast Robotic Depalletizing

Holz, D., Topalidou-Kyniazopoulou, A., Stueckler, J., Behnke, S.

In IEEE International Conference on Intelligent Robots and Systems (IROS), 2015 (inproceedings)

ev

link (url) [BibTex]

2015


link (url) [BibTex]


no image
Dense Continuous-Time Tracking and Mapping with Rolling Shutter RGB-D Cameras

Kerl, C., Stueckler, J., Cremers, D.

In IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 2015, {[video][supplementary][datasets]} (inproceedings)

ev

[BibTex]

[BibTex]


no image
Perception of Deformable Objects and Compliant Manipulation for Service Robots

Stueckler, J., Behnke, S.

In Soft Robotics: From Theory to Applications, Springer, 2015 (inbook)

ev

link (url) [BibTex]

link (url) [BibTex]


no image
Large-Scale Direct SLAM with Stereo Cameras

Engel, J., Stueckler, J., Cremers, D.

In IEEE International Conference on Intelligent Robots and Systems (IROS), 2015 (inproceedings)

ev

[BibTex]

[BibTex]


Exciting Engineered Passive Dynamics in a Bipedal Robot
Exciting Engineered Passive Dynamics in a Bipedal Robot

Renjewski, D., Spröwitz, A., Peekema, A., Jones, M., Hurst, J.

{IEEE Transactions on Robotics and Automation}, 31(5):1244-1251, IEEE, New York, NY, 2015 (article)

Abstract
A common approach in designing legged robots is to build fully actuated machines and control the machine dynamics entirely in soft- ware, carefully avoiding impacts and expending a lot of energy. However, these machines are outperformed by their human and animal counterparts. Animals achieve their impressive agility, efficiency, and robustness through a close integration of passive dynamics, implemented through mechanical components, and neural control. Robots can benefit from this same integrated approach, but a strong theoretical framework is required to design the passive dynamics of a machine and exploit them for control. For this framework, we use a bipedal spring–mass model, which has been shown to approximate the dynamics of human locomotion. This paper reports the first implementation of spring–mass walking on a bipedal robot. We present the use of template dynamics as a control objective exploiting the engineered passive spring–mass dynamics of the ATRIAS robot. The results highlight the benefits of combining passive dynamics with dynamics-based control and open up a library of spring–mass model-based control strategies for dynamic gait control of robots.

dlg

link (url) DOI Project Page [BibTex]

link (url) DOI Project Page [BibTex]


Comparing the effect of different spine and leg designs for a small bounding quadruped robot
Comparing the effect of different spine and leg designs for a small bounding quadruped robot

Eckert, P., Spröwitz, A., Witte, H., Ijspeert, A. J.

In Proceedings of ICRA, pages: 3128-3133, Seattle, Washington, USA, 2015 (inproceedings)

Abstract
We present Lynx-robot, a quadruped, modular, compliant machine. It alternately features a directly actuated, single-joint spine design, or an actively supported, passive compliant, multi-joint spine configuration. Both spine con- figurations bend in the sagittal plane. This study aims at characterizing these two, largely different spine concepts, for a bounding gait of a robot with a three segmented, pantograph leg design. An earlier, similar-sized, bounding, quadruped robot named Bobcat with a two-segment leg design and a directly actuated, single-joint spine design serves as a comparison robot, to study and compare the effect of the leg design on speed, while keeping the spine design fixed. Both proposed spine designs (single rotatory and active and multi-joint compliant) reach moderate, self-stable speeds.

dlg

link (url) DOI Project Page [BibTex]

link (url) DOI Project Page [BibTex]


no image
Efficient Dense Rigid-Body Motion Segmentation and Estimation in RGB-D Video

Stueckler, J., Behnke, S.

International Journal of Computer Vision (IJCV), 113(3):233-245, 2015 (article)

ev

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Motion Cooperation: Smooth Piece-Wise Rigid Scene Flow from RGB-D Images

Jaimez, M., Souiai, M., Stueckler, J., Gonzalez-Jimenez, J., Cremers, D.

In Proc. of the Int. Conference on 3D Vision (3DV), October 2015, {[video]} (inproceedings)

ev

[BibTex]

[BibTex]


no image
Super-Resolution Keyframe Fusion for 3D Modeling with High-Quality Textures

Maier, R., Stueckler, J., Cremers, D.

In International Conference on 3D Vision (3DV), October 2015, {[slides] [poster]} (inproceedings)

ev

[BibTex]

[BibTex]


no image
Reconstructing Street-Scenes in Real-Time From a Driving Car

Usenko, V., Engel, J., Stueckler, J., Cremers, D.

In Proc. of the Int. Conference on 3D Vision (3DV), October 2015 (inproceedings)

ev

[BibTex]

[BibTex]

2013


Benefits of an active spine supported bounding locomotion with a small compliant quadruped robot
Benefits of an active spine supported bounding locomotion with a small compliant quadruped robot

Khoramshahi, M., Spröwitz, A., Tuleu, A., Ahmadabadi, M. N., Ijspeert, A. J.

In Robotics and Automation (ICRA), 2013 IEEE International Conference on, pages: 3329-3334, May 2013 (inproceedings)

Abstract
We studied the effect of the control of an active spine versus a fixed spine, on a quadruped robot running in bound gait. Active spine supported actuation led to faster locomotion, with less foot sliding on the ground, and a higher stability to go straight forward. However, we did no observe an improvement of cost of transport of the spine-actuated, faster robot system compared to the rigid spine.

dlg

Youtube DOI Project Page [BibTex]

2013


Youtube DOI Project Page [BibTex]


Central pattern generators augmented with virtual model control for quadruped rough terrain locomotion
Central pattern generators augmented with virtual model control for quadruped rough terrain locomotion

Ajallooeian, M., Pouya, S., Spröwitz, A., Ijspeert, A. J.

In Proceedings of the 2013 IEEE International Conference on Robotics and Automation (ICRA), pages: 3321-3328, IEEE, Karlsruhe, 2013 (inproceedings)

Abstract
We present a modular controller for quadruped locomotion over unperceived rough terrain. Our approach is based on a computational Central Pattern Generator (CPG) model implemented as coupled nonlinear oscillators. Stumbling correction reflex is implemented as a sensory feedback mechanism affecting the CPG. We augment the outputs of the CPG with virtual model control torques responsible for posture control. The control strategy is validated on a 3D forward dynamics simulated quadruped robot platform of about the size and weight of a cat. To demonstrate the capabilities of the proposed approach, we perform locomotion over unperceived uneven terrain and slopes, as well as situations facing external pushes.

dlg

DOI [BibTex]

DOI [BibTex]


Motor Control Adaptation to Changes in Robot Body Dynamics for a Compliant Quadruped Robot
Motor Control Adaptation to Changes in Robot Body Dynamics for a Compliant Quadruped Robot

Pouya, S., Eckert, P., Spröwitz, A., Moc̈kel, R., Ijspeert, A. J.

In Biomimetic and Biohybrid Systems, 8064, pages: 434-437, Lecture Notes in Computer Science, Springer, Heidelberg, 2013 (incollection)

Abstract
One of the major deficiencies of current robots in comparison to living beings is the ability to adapt to new conditions either resulting from environmental changes or their own dynamics. In this work we focus on situations where the robot experiences involuntary changes in its body particularly in its limbs’ inertia. Inspired from its biological counterparts we are interested in enabling the robot to adapt its motor control to the new system dynamics. To reach this goal, we propose two different control strategies and compare their performance when handling these modifications. Our results show substantial improvements in adaptivity to body changes when the robot is aware of its new dynamics and can exploit this knowledge in synthesising new motor control.

dlg

DOI [BibTex]

DOI [BibTex]


Towards Dynamic Trot Gait Locomotion: Design, Control, and Experiments with Cheetah-cub, a Compliant Quadruped Robot
Towards Dynamic Trot Gait Locomotion: Design, Control, and Experiments with Cheetah-cub, a Compliant Quadruped Robot

Spröwitz, A., Tuleu, A., Vespignani, M., Ajallooeian, M., Badri, E., Ijspeert, A. J.

{The International Journal of Robotics Research}, 32(8):932-950, Sage Publications, Inc., Cambridge, MA, 2013 (article)

Abstract
We present the design of a novel compliant quadruped robot, called Cheetah-cub, and a series of locomotion experiments with fast trotting gaits. The robot’s leg configuration is based on a spring-loaded, pantograph mechanism with multiple segments. A dedicated open-loop locomotion controller was derived and implemented. Experiments were run in simulation and in hardware on flat terrain and with a step down, demonstrating the robot’s self-stabilizing properties. The robot reached a running trot with short flight phases with a maximum Froude number of FR = 1.30, or 6.9 body lengths per second. Morphological parameters such as the leg design also played a role. By adding distal in-series elasticity, self- stability and maximum robot speed improved. Our robot has several advantages, especially when compared with larger and stiffer quadruped robot designs. (1) It is, to the best of the authors’ knowledge, the fastest of all quadruped robots below 30 kg (in terms of Froude number and body lengths per second). (2) It shows self-stabilizing behavior over a large range of speeds with open-loop control. (3) It is lightweight, compact, and electrically powered. (4) It is cheap, easy to reproduce, robust, and safe to handle. This makes it an excellent tool for research of multi-segment legs in quadruped robots.

dlg

Youtube1 Youtube2 Youtube3 Youtube4 Youtube5 DOI Project Page [BibTex]

Youtube1 Youtube2 Youtube3 Youtube4 Youtube5 DOI Project Page [BibTex]


Gait Optimization for Roombots Modular Robots - Matching Simulation and Reality
Gait Optimization for Roombots Modular Robots - Matching Simulation and Reality

Möckel, R., Yura, N. P., The Nguyen, A., Vespignani, M., Bonardi, S., Pouya, S., Spröwitz, A., van den Kieboom, J., Wilhelm, F., Ijspeert, A. J.

In Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages: 3265-3272, IEEE, Tokyo, 2013 (inproceedings)

Abstract
The design of efficient locomotion gaits for robots with many degrees of freedom is challenging and time consuming even if optimization techniques are applied. Control parameters can be found through optimization in two ways: (i) through online optimization where the performance of a robot is measured while trying different control parameters on the actual hardware and (ii) through offline optimization by simulating the robot’s behavior with the help of models of the robot and its environment. In this paper, we present a hybrid optimization method that combines the best properties of online and offline optimization to efficiently find locomotion gaits for arbitrary structures. In comparison to pure online optimization, both the number of experiments using robotic hardware as well as the total time required for finding efficient locomotion gaits get highly reduced by running the major part of the optimization process in simulation using a cluster of processors. The presented example shows that even for robots with a low number of degrees of freedom the time required for optimization can be reduced by a factor of 2.5 to 30, at least, depending on how extensive the search for optimized control parameters should be. Time for hardware experiments becomes minimal. More importantly, gaits that can possibly damage the robotic hardware can be filtered before being tried in hardware. Yet in contrast to pure offline optimization, we reach well matched behavior that allows a direct transfer of locomotion gaits from simulation to hardware. This is because through a meta-optimization we adapt not only the locomotion parameters but also the parameters for simulation models of the robot and environment allowing for a good matching of the robot behavior in simulation and hardware. We validate the proposed hybrid optimization method on a structure composed of two Roombots modules with a total number of six degrees of freedom. Roombots are self-reconfigurable modular robots that can form arbitrary structures with many degrees of freedom through an integrated active connection mechanism.

dlg

DOI [BibTex]

DOI [BibTex]


no image
Efficient 3D Object Perception and Grasp Planning for Mobile Manipulation in Domestic Environments

Stueckler, J., Steffens, R., Holz, D., Behnke, S.

Robotics and Autonomous Systems (RAS), 61(10):1106-1115, 2013 (article)

ev

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
NimbRo@Home: Winning Team of the RoboCup@Home Competition 2012

Stueckler, J., Badami, I., Droeschel, D., Gräve, K., Holz, D., McElhone, M., Nieuwenhuisen, M., Schreiber, M., Schwarz, M., Behnke, S.

In RoboCup 2012, Robot Soccer World Cup XVI, pages: 94-105, Springer, 2013 (inbook)

ev

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Modular Control of Limit Cycle Locomotion over Unperceived Rough Terrain
Modular Control of Limit Cycle Locomotion over Unperceived Rough Terrain

Ajallooeian, M., Gay, S., Tuleu, A., Spröwitz, A., Ijspeert, A. J.

In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2013, pages: 3390-3397, Tokyo, 2013 (inproceedings)

Abstract
We present a general approach to design modular controllers for limit cycle locomotion over unperceived rough terrain. The control strategy uses a Central Pattern Generator (CPG) model implemented as coupled nonlinear oscillators as basis. Stumbling correction and leg extension reflexes are implemented as feedbacks for fast corrections, and model-based posture control mechanisms define feedbacks for continuous corrections. The control strategy is validated on a detailed physics-based simulated model of a compliant quadruped robot, the Oncilla robot. We demonstrate dynamic locomotion with a speed of more than 1.5 BodyLength/s over unperceived uneven terrains, steps, and slopes.

dlg

DOI [BibTex]

DOI [BibTex]


Horse-Like Walking, Trotting, and Galloping derived from Kinematic Motion Primitives (kMPs) and their Application to Walk/Trot Transitions in a Compliant Quadruped Robot
Horse-Like Walking, Trotting, and Galloping derived from Kinematic Motion Primitives (kMPs) and their Application to Walk/Trot Transitions in a Compliant Quadruped Robot

Moro, F., Spröwitz, A., Tuleu, A., Vespignani, M., Tsagakiris, N. G., Ijspeert, A. J., Caldwell, D. G.

Biological Cybernetics, 107(3):309-320, 2013 (article)

Abstract
This manuscript proposes a method to directly transfer the features of horse walking, trotting, and galloping to a quadruped robot, with the aim of creating a much more natural (horse-like) locomotion profile. A principal component analysis on horse joint trajectories shows that walk, trot, and gallop can be described by a set of four kinematic Motion Primitives (kMPs). These kMPs are used to generate valid, stable gaits that are tested on a compliant quadruped robot. Tests on the effects of gait frequency scaling as follows: results indicate a speed optimal walking frequency around 3.4 Hz, and an optimal trotting frequency around 4 Hz. Following, a criterion to synthesize gait transitions is proposed, and the walk/trot transitions are successfully tested on the robot. The performance of the robot when the transitions are scaled in frequency is evaluated by means of roll and pitch angle phase plots.

dlg

DOI [BibTex]

DOI [BibTex]


no image
Efficient Dense 3D Rigid-Body Motion Segmentation in RGB-D Video

Stueckler, J., Behnke, S.

In Proc. of the British Machine Vision Conference (BMVC), 2013 (inproceedings)

ev

link (url) [BibTex]

link (url) [BibTex]


no image
Mobile bin picking with an anthropomorphic service robot

Nieuwenhuisen, M., Droeschel, D., Holz, D., Stueckler, J., Berner, A., Li, J., Klein, R., Behnke, S.

In Proc. of the IEEE International Conference on Robotics and Automation (ICRA), pages: 2327-2334, May 2013 (inproceedings)

ev

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Multi-resolution surfel mapping and real-time pose tracking using a continuously rotating 2D laser scanner

Schadler, M., Stueckler, J., Behnke, S.

In Proc. of the IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), pages: 1-6, October 2013 (inproceedings)

ev

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Joint detection and pose tracking of multi-resolution surfel models in RGB-D

McElhone, M., Stueckler, J., Behnke, S.

In Proc. of the European Conference on Mobile Robots (ECMR), pages: 131-137, IEEE, 2013 (inproceedings)

ev

link (url) [BibTex]

link (url) [BibTex]


no image
Distinctive 3D surface entropy features for place recognition.

Fiolka, T., Stueckler, J., Klein, D. A., Schulz, D., Behnke, S.

In Proc. of the European Conference on Mobile Robots (ECMR), pages: 204-209, IEEE, 2013 (inproceedings)

ev

link (url) [BibTex]

link (url) [BibTex]


no image
Combining contour and shape primitives for object detection and pose estimation of prefabricated parts

Berner, A., Li, J., Holz, D., Stueckler, J., Behnke, S., Klein, R.

In Proc. of the 20th IEEE International Conference on Image Processing (ICIP), pages: 3326-3330, sep 2013 (inproceedings)

ev

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Hierarchical Object Discovery and Dense Modelling From Motion Cues in RGB-D Video

Stueckler, J., Behnke, S.

In Proc. of the 23rd International Joint Conference on Artificial Intelligence (IJCAI), IJCAI/AAAI, 2013 (inproceedings)

ev

link (url) [BibTex]

link (url) [BibTex]

2011


no image
Following human guidance to cooperatively carry a large object

Stueckler, J., Behnke, S.

In Proc. of the 11th IEEE-RAS Int. Conf. on Humanoid Robots (Humanoids), pages: 218-223, October 2011 (inproceedings)

ev

link (url) DOI [BibTex]

2011


link (url) DOI [BibTex]


no image
Real-Time 3D Perception and Efficient Grasp Planning for Everyday Manipulation Tasks.

Stueckler, J., Steffens, R., Holz, D., Behnke, S.

In Proc. of the European Conf. on Mobile Robots (ECMR), pages: 177-182, 2011 (inproceedings)

ev

link (url) [BibTex]

link (url) [BibTex]


no image
Towards joint attention for a domestic service robot - person awareness and gesture recognition using Time-of-Flight cameras

Droeschel, D., Stueckler, J., Holz, D., Behnke, S.

In Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA), pages: 1205-1210, May 2011 (inproceedings)

ev

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Compliant Task-Space Control with Back-Drivable Servo Actuators

Stueckler, J., Behnke, S.

In RoboCup, 7416, pages: 78-89, Lecture Notes in Computer Science, Springer, 2011 (inproceedings)

ev

link (url) [BibTex]

link (url) [BibTex]


no image
Interest point detection in depth images through scale-space surface analysis

Stueckler, J., Behnke, S.

In Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA), pages: 3568-3574, May 2011 (inproceedings)

ev

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Learning to Interpret Pointing Gestures with a Time-of-flight Camera

Droeschel, D., Stueckler, J., Behnke, S.

In Proceedings of the 6th International Conference on Human-robot Interaction, pages: 481-488, ACM, 2011 (inproceedings)

ev

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Efficient Multi-resolution Plane Segmentation of 3D Point Clouds

Oehler, B., Stueckler, J., Welle, J., Schulz, D., Behnke, S.

In Proc. of the Int. Conf. on Intelligent Robotics and Applications (ICIRA), 7102, pages: 145-156, Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2011 (inproceedings)

ev

link (url) DOI [BibTex]

link (url) DOI [BibTex]

2010


Graph signature for self-reconfiguration planning of modules with symmetry
Graph signature for self-reconfiguration planning of modules with symmetry

Asadpour, M., Ashtiani, M. H. Z., Spröwitz, A., Ijspeert, A. J.

In Proceedings of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages: 5295-5300, IEEE, St. Louis, MO, 2010 (inproceedings)

Abstract
In our previous works we had developed a framework for self-reconfiguration planning based on graph signature and graph edit-distance. The graph signature is a fast isomorphism test between different configurations and the graph edit-distance is a similarity metric. But the algorithm is not suitable for modules with symmetry. In this paper we improve the algorithm in order to deal with symmetric modules. Also, we present a new heuristic function to guide the search strategy by penalizing the solutions with more number of actions. The simulation results show the new algorithm not only deals with symmetric modules successfully but also finds better solutions in a shorter time.

dlg

DOI [BibTex]

2010


DOI [BibTex]


Roombots - Towards decentralized reconfiguration with self-reconfiguring modular robotic metamodules
Roombots - Towards decentralized reconfiguration with self-reconfiguring modular robotic metamodules

Spröwitz, A., Laprade, P., Bonardi, S., Mayer, M., Moeckel, R., Mudry, P., Ijspeert, A. J.

In Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages: 1126-1132, IEEE, Taipeh, 2010 (inproceedings)

Abstract
This paper presents our work towards a decentralized reconfiguration strategy for self-reconfiguring modular robots, assembling furniture-like structures from Roombots (RB) metamodules. We explore how reconfiguration by loco- motion from a configuration A to a configuration B can be controlled in a distributed fashion. This is done using Roombots metamodules—two Roombots modules connected serially—that use broadcast signals, lookup tables of their movement space, assumptions about their neighborhood, and connections to a structured surface to collectively build desired structures without the need of a centralized planner.

dlg

DOI [BibTex]

DOI [BibTex]


Roombots: Reconfigurable Robots for Adaptive Furniture
Roombots: Reconfigurable Robots for Adaptive Furniture

Spröwitz, A., Pouya, S., Bonardi, S., van den Kieboom, J., Möckel, R., Billard, A., Dillenbourg, P., Ijspeert, A.

Computational Intelligence Magazine, IEEE, 5(3):20-32, 2010 (article)

Abstract
Imagine a world in which our furniture moves around like legged robots, interacts with us, and changes shape and function during the day according to our needs. This is the long term vision we have in the Roombots project. To work towards this dream, we are developing modular robotic modules that have rotational degrees of freedom for locomotion as well as active connection mechanisms for runtime reconfiguration. A piece of furniture, e.g. a stool, will thus be composed of several modules that activate their rotational joints together to implement locomotor gaits, and will be able to change shape, e.g. transforming into a chair, by sequences of attachments and detachments of modules. In this article, we firstly present the project and the hardware we are currently developing. We explore how reconfiguration from a configuration A to a configuration B can be controlled in a distributed fashion. This is done using metamodules-two Roombots modules connected serially-that use broadcast signals and connections to a structured ground to collectively build desired structures without the need of a centralized planner. We then present how locomotion controllers can be implemented in a distributed system of coupled oscillators-one per degree of freedom-similarly to the concept of central pattern generators (CPGs) found in the spinal cord of vertebrate animals. The CPGs are based on coupled phase oscillators to ensure synchronized behavior and have different output filters to allow switching between oscillations and rotations. A stochastic optimization algorithm is used to explore optimal CPG configurations for different simulated Roombots structures.

dlg

DOI [BibTex]

DOI [BibTex]


Distributed Online Learning of Central Pattern Generators in Modular Robots
Distributed Online Learning of Central Pattern Generators in Modular Robots

Christensen, D. J., Spröwitz, A., Ijspeert, A. J.

In From Animals to Animats 11, 6226, pages: 402-412, Lecture Notes in Computer Science, Springer, Berlin, 2010, author: Doncieux, Stéphan (incollection)

Abstract
In this paper we study distributed online learning of locomotion gaits for modular robots. The learning is based on a stochastic ap- proximation method, SPSA, which optimizes the parameters of coupled oscillators used to generate periodic actuation patterns. The strategy is implemented in a distributed fashion, based on a globally shared reward signal, but otherwise utilizing local communication only. In a physics-based simulation of modular Roombots robots we experiment with online learn- ing of gaits and study the effects of: module failures, different robot morphologies, and rough terrains. The experiments demonstrate fast online learning, typically 5-30 min. for convergence to high performing gaits (≈ 30 cm/sec), despite high numbers of open parameters (45-54). We conclude that the proposed approach is efficient, effective and a promising candidate for online learning on many other robotic platforms.

dlg

DOI [BibTex]

DOI [BibTex]


Automatic Gait Generation in Modular Robots: to Oscillate or to Rotate? that is the question
Automatic Gait Generation in Modular Robots: to Oscillate or to Rotate? that is the question

Pouya, S., van den Kieboom, J., Spröwitz, A., Ijspeert, A. J.

In Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages: 514-520, IEEE, Taipei, 2010 (inproceedings)

Abstract
Modular robots offer the possibility to design robots with a high diversity of shapes and functionalities. This nice feature also brings an important challenge: namely how to design efficient locomotion gaits for arbitrary robot structures with many degrees of freedom. In this paper, we present a framework that allows one to explore and identify highly different gaits for a given arbitrary- shaped modular robot. We use simulated robots made of several Roombots modules that have three rotational joints each. These modules have the interesting feature that they can produce both oscillatory movements (i.e. periodic movements around a rest position) and rotational movements (i.e. with continuously increasing angle), leading to very rich locomotion patterns. Here we ask ourselves which types of movements —purely oscillatory, purely rotational, or a combination of both— lead to the fastest gaits. To address this question we designed a control architecture based on a distributed system of coupled phase oscillators that can produce synchronized rotations and oscillations in many degrees of freedom. We also designed a specific optimization algorithm that can automatically design hybrid controllers, i.e. controllers that use oscillations in some joints and rotations in others, for fast gaits. The proposed framework is verified by multiple simulations for several robot morphologies. The results show that (i) the question whether it is better to oscillate or to rotate depends on the morphology of the robot, and that in general it is best to do both, (ii) the optimization framework can successfully generate hybrid controllers that outperform purely oscillatory and purely rotational ones, and (iii) the resulting gaits are fast, innovative, and would have been hard to design by hand.

dlg

DOI [BibTex]

DOI [BibTex]


Roombots: Design and Implementation of a Modular Robot for Reconfiguration and Locomotion
Roombots: Design and Implementation of a Modular Robot for Reconfiguration and Locomotion

Spröwitz, A.

EPFL, Lausanne, Lausanne, 2010 (phdthesis)

dlg

DOI [BibTex]


no image
Combining depth and color cues for scale- and viewpoint-invariant object segmentation and recognition using Random Forests

Stueckler, J., Behnke, S.

In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), pages: 4566-4571, October 2010 (inproceedings)

ev

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Intuitive Multimodal Interaction for Domestic Service Robots

Nieuwenhuisen, M., Stueckler, J., Behnke, S.

In Proc. of the ISR/ROBOTIK, VDE Verlag, 2010 (inproceedings)

ev

link (url) [BibTex]

link (url) [BibTex]


no image
Improving People Awareness of Service Robots by Semantic Scene Knowledge

Stueckler, J., Behnke, S.

In RobuCup, 6556, pages: 157-168, Lecture Notes in Computer Science, Springer, 2010 (inproceedings)

ev

link (url) [BibTex]

link (url) [BibTex]


no image
Towards Semantic Scene Analysis with Time-of-flight Cameras

Holz, D., Schnabel, R., Droeschel, D., Stueckler, J., Behnke, S.

In RobuCup, 6556, pages: 121-132, Lecture Notes in Computer Science, Springer, 2010 (inproceedings)

ev

link (url) [BibTex]

link (url) [BibTex]


no image
Utilizing the Structure of Field Lines for Efficient Soccer Robot Localization

Schulz, H., Liu, W., Stueckler, J., Behnke, S.

In RobuCup, 6556, pages: 397-408, Lecture Notes in Computer Science, Springer, 2010 (inproceedings)

ev

link (url) [BibTex]

link (url) [BibTex]


no image
Improving indoor navigation of autonomous robots by an explicit representation of doors

Nieuwenhuisen, M., Stueckler, J., Behnke, S.

In Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA), pages: 4895-4901, May 2010 (inproceedings)

ev

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Improving imitated grasping motions through interactive expected deviation learning

Gräve, K., Stueckler, J., Behnke, S.

In Proc. of the 10th IEEE-RAS Int. Conf. on Humanoid Robots (Humanoids), pages: 397-404, December 2010 (inproceedings)

ev

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Learning Motion Skills from Expert Demonstrations and Own Experience using Gaussian Process Regression

Gräve, K., Stueckler, J., Behnke, S.

In Proc. of the ISR/ROBOTIK, pages: 1-8, VDE Verlag, 2010 (inproceedings)

ev

link (url) [BibTex]

link (url) [BibTex]


no image
Using Time-of-Flight cameras with active gaze control for 3D collision avoidance

Droeschel, D., Holz, D., Stueckler, J., Behnke, S.

In Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA), pages: 4035-4040, May 2010 (inproceedings)

ev

link (url) [BibTex]

link (url) [BibTex]

2009


Roombots-mechanical design of self-reconfiguring modular robots for adaptive furniture
Roombots-mechanical design of self-reconfiguring modular robots for adaptive furniture

Spröwitz, A., Billard, A., Dillenbourg, P., Ijspeert, A. J.

In Proceedings of the 2009 IEEE International Conference on Robotics and Automation (ICRA), pages: 4259-4264, IEEE, Kobe, 2009 (inproceedings)

Abstract
We aim at merging technologies from information technology, roomware, and robotics in order to design adaptive and intelligent furniture. This paper presents design principles for our modular robots, called Roombots, as future building blocks for furniture that moves and self-reconfigures. The reconfiguration is done using dynamic connection and disconnection of modules and rotations of the degrees of freedom. We are furthermore interested in applying Roombots towards adaptive behaviour, such as online learning of locomotion patterns. To create coordinated and efficient gait patterns, we use a Central Pattern Generator (CPG) approach, which can easily be optimized by any gradient-free optimization algorithm. To provide a hardware framework we present the mechanical design of the Roombots modules and an active connection mechanism based on physical latches. Further we discuss the application of our Roombots modules as pieces of a homogenic or heterogenic mix of building blocks for static structures.

dlg

DOI [BibTex]

2009


DOI [BibTex]


no image
Integrating indoor mobility, object manipulation, and intuitive interaction for domestic service tasks

Stueckler, J., Behnke, S.

In Proc. of the IEEE-RAS Int. Conf. on Humanoid Robots (Humanoids), pages: 506-513, December 2009 (inproceedings)

ev

link (url) DOI [BibTex]

link (url) DOI [BibTex]