Header logo is


2015


no image
Real-Time Object Detection, Localization and Verification for Fast Robotic Depalletizing

Holz, D., Topalidou-Kyniazopoulou, A., Stueckler, J., Behnke, S.

In IEEE International Conference on Intelligent Robots and Systems (IROS), 2015 (inproceedings)

ev

link (url) [BibTex]

2015


link (url) [BibTex]


no image
Dense Continuous-Time Tracking and Mapping with Rolling Shutter RGB-D Cameras

Kerl, C., Stueckler, J., Cremers, D.

In IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 2015, {[video][supplementary][datasets]} (inproceedings)

ev

[BibTex]

[BibTex]


no image
Large-Scale Direct SLAM with Stereo Cameras

Engel, J., Stueckler, J., Cremers, D.

In IEEE International Conference on Intelligent Robots and Systems (IROS), 2015 (inproceedings)

ev

[BibTex]

[BibTex]


no image
Motion Cooperation: Smooth Piece-Wise Rigid Scene Flow from RGB-D Images

Jaimez, M., Souiai, M., Stueckler, J., Gonzalez-Jimenez, J., Cremers, D.

In Proc. of the Int. Conference on 3D Vision (3DV), October 2015, {[video]} (inproceedings)

ev

[BibTex]

[BibTex]


no image
Trajectory generation for multi-contact momentum control

Herzog, A., Rotella, N., Schaal, S., Righetti, L.

In 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids), pages: 874-880, IEEE, Seoul, South Korea, 2015 (inproceedings)

Abstract
Simplified models of the dynamics such as the linear inverted pendulum model (LIPM) have proven to perform well for biped walking on flat ground. However, for more complex tasks the assumptions of these models can become limiting. For example, the LIPM does not allow for the control of contact forces independently, is limited to co-planar contacts and assumes that the angular momentum is zero. In this paper, we propose to use the full momentum equations of a humanoid robot in a trajectory optimization framework to plan its center of mass, linear and angular momentum trajectories. The model also allows for planning desired contact forces for each end-effector in arbitrary contact locations. We extend our previous results on linear quadratic regulator (LQR) design for momentum control by computing the (linearized) optimal momentum feedback law in a receding horizon fashion. The resulting desired momentum and the associated feedback law are then used in a hierarchical whole body control approach. Simulation experiments show that the approach is computationally fast and is able to generate plans for locomotion on complex terrains while demonstrating good tracking performance for the full humanoid control.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Super-Resolution Keyframe Fusion for 3D Modeling with High-Quality Textures

Maier, R., Stueckler, J., Cremers, D.

In International Conference on 3D Vision (3DV), October 2015, {[slides] [poster]} (inproceedings)

ev

[BibTex]

[BibTex]


no image
Humanoid Momentum Estimation Using Sensed Contact Wrenches

Rotella, N., Herzog, A., Schaal, S., Righetti, L.

In 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids), pages: 556-563, IEEE, Seoul, South Korea, 2015 (inproceedings)

Abstract
This work presents approaches for the estimation of quantities important for the control of the momentum of a humanoid robot. In contrast to previous approaches which use simplified models such as the Linear Inverted Pendulum Model, we present estimators based on the momentum dynamics of the robot. By using this simple yet dynamically-consistent model, we avoid the issues of using simplified models for estimation. We develop an estimator for the center of mass and full momentum which can be reformulated to estimate center of mass offsets as well as external wrenches applied to the robot. The observability of these estimators is investigated and their performance is evaluated in comparison to previous approaches.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Reconstructing Street-Scenes in Real-Time From a Driving Car

Usenko, V., Engel, J., Stueckler, J., Cremers, D.

In Proc. of the Int. Conference on 3D Vision (3DV), October 2015 (inproceedings)

ev

[BibTex]

[BibTex]

2013


no image
AGILITY – Dynamic Full Body Locomotion and Manipulation with Autonomous Legged Robots

Hutter, M., Bloesch, M., Buchli, J., Semini, C., Bazeille, S., Righetti, L., Bohg, J.

In 2013 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), pages: 1-4, IEEE, Linköping, Sweden, 2013 (inproceedings)

mg

link (url) DOI [BibTex]

2013


link (url) DOI [BibTex]


no image
Efficient Dense 3D Rigid-Body Motion Segmentation in RGB-D Video

Stueckler, J., Behnke, S.

In Proc. of the British Machine Vision Conference (BMVC), 2013 (inproceedings)

ev

link (url) [BibTex]

link (url) [BibTex]


no image
Mobile bin picking with an anthropomorphic service robot

Nieuwenhuisen, M., Droeschel, D., Holz, D., Stueckler, J., Berner, A., Li, J., Klein, R., Behnke, S.

In Proc. of the IEEE International Conference on Robotics and Automation (ICRA), pages: 2327-2334, May 2013 (inproceedings)

ev

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Learning Objective Functions for Manipulation

Kalakrishnan, M., Pastor, P., Righetti, L., Schaal, S.

In 2013 IEEE International Conference on Robotics and Automation, IEEE, Karlsruhe, Germany, 2013 (inproceedings)

Abstract
We present an approach to learning objective functions for robotic manipulation based on inverse reinforcement learning. Our path integral inverse reinforcement learning algorithm can deal with high-dimensional continuous state-action spaces, and only requires local optimality of demonstrated trajectories. We use L 1 regularization in order to achieve feature selection, and propose an efficient algorithm to minimize the resulting convex objective function. We demonstrate our approach by applying it to two core problems in robotic manipulation. First, we learn a cost function for redundancy resolution in inverse kinematics. Second, we use our method to learn a cost function over trajectories, which is then used in optimization-based motion planning for grasping and manipulation tasks. Experimental results show that our method outperforms previous algorithms in high-dimensional settings.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Multi-resolution surfel mapping and real-time pose tracking using a continuously rotating 2D laser scanner

Schadler, M., Stueckler, J., Behnke, S.

In Proc. of the IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), pages: 1-6, October 2013 (inproceedings)

ev

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Joint detection and pose tracking of multi-resolution surfel models in RGB-D

McElhone, M., Stueckler, J., Behnke, S.

In Proc. of the European Conference on Mobile Robots (ECMR), pages: 131-137, IEEE, 2013 (inproceedings)

ev

link (url) [BibTex]

link (url) [BibTex]


no image
Distinctive 3D surface entropy features for place recognition.

Fiolka, T., Stueckler, J., Klein, D. A., Schulz, D., Behnke, S.

In Proc. of the European Conference on Mobile Robots (ECMR), pages: 204-209, IEEE, 2013 (inproceedings)

ev

link (url) [BibTex]

link (url) [BibTex]


no image
Combining contour and shape primitives for object detection and pose estimation of prefabricated parts

Berner, A., Li, J., Holz, D., Stueckler, J., Behnke, S., Klein, R.

In Proc. of the 20th IEEE International Conference on Image Processing (ICIP), pages: 3326-3330, sep 2013 (inproceedings)

ev

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Hierarchical Object Discovery and Dense Modelling From Motion Cues in RGB-D Video

Stueckler, J., Behnke, S.

In Proc. of the 23rd International Joint Conference on Artificial Intelligence (IJCAI), IJCAI/AAAI, 2013 (inproceedings)

ev

link (url) [BibTex]

link (url) [BibTex]


no image
Learning Task Error Models for Manipulation

Pastor, P., Kalakrishnan, M., Binney, J., Kelly, J., Righetti, L., Sukhatme, G. S., Schaal, S.

In 2013 IEEE Conference on Robotics and Automation, IEEE, Karlsruhe, Germany, 2013 (inproceedings)

Abstract
Precise kinematic forward models are important for robots to successfully perform dexterous grasping and manipulation tasks, especially when visual servoing is rendered infeasible due to occlusions. A lot of research has been conducted to estimate geometric and non-geometric parameters of kinematic chains to minimize reconstruction errors. However, kinematic chains can include non-linearities, e.g. due to cable stretch and motor-side encoders, that result in significantly different errors for different parts of the state space. Previous work either does not consider such non-linearities or proposes to estimate non-geometric parameters of carefully engineered models that are robot specific. We propose a data-driven approach that learns task error models that account for such unmodeled non-linearities. We argue that in the context of grasping and manipulation, it is sufficient to achieve high accuracy in the task relevant state space. We identify this relevant state space using previously executed joint configurations and learn error corrections for those. Therefore, our system is developed to generate subsequent executions that are similar to previous ones. The experiments show that our method successfully captures the non-linearities in the head kinematic chain (due to a counterbalancing spring) and the arm kinematic chains (due to cable stretch) of the considered experimental platform, see Fig. 1. The feasibility of the presented error learning approach has also been evaluated in independent DARPA ARM-S testing contributing to successfully complete 67 out of 72 grasping and manipulation tasks.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]

2011


no image
Following human guidance to cooperatively carry a large object

Stueckler, J., Behnke, S.

In Proc. of the 11th IEEE-RAS Int. Conf. on Humanoid Robots (Humanoids), pages: 218-223, October 2011 (inproceedings)

ev

link (url) DOI [BibTex]

2011


link (url) DOI [BibTex]


no image
Real-Time 3D Perception and Efficient Grasp Planning for Everyday Manipulation Tasks.

Stueckler, J., Steffens, R., Holz, D., Behnke, S.

In Proc. of the European Conf. on Mobile Robots (ECMR), pages: 177-182, 2011 (inproceedings)

ev

link (url) [BibTex]

link (url) [BibTex]


no image
Towards joint attention for a domestic service robot - person awareness and gesture recognition using Time-of-Flight cameras

Droeschel, D., Stueckler, J., Holz, D., Behnke, S.

In Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA), pages: 1205-1210, May 2011 (inproceedings)

ev

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Learning Force Control Policies for Compliant Manipulation

Kalakrishnan, M., Righetti, L., Pastor, P., Schaal, S.

In 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages: 4639-4644, IEEE, San Francisco, USA, sep 2011 (inproceedings)

Abstract
Developing robots capable of fine manipulation skills is of major importance in order to build truly assistive robots. These robots need to be compliant in their actuation and control in order to operate safely in human environments. Manipulation tasks imply complex contact interactions with the external world, and involve reasoning about the forces and torques to be applied. Planning under contact conditions is usually impractical due to computational complexity, and a lack of precise dynamics models of the environment. We present an approach to acquiring manipulation skills on compliant robots through reinforcement learning. The initial position control policy for manipulation is initialized through kinesthetic demonstration. We augment this policy with a force/torque profile to be controlled in combination with the position trajectories. We use the Policy Improvement with Path Integrals (PI2) algorithm to learn these force/torque profiles by optimizing a cost function that measures task success. We demonstrate our approach on the Barrett WAM robot arm equipped with a 6-DOF force/torque sensor on two different manipulation tasks: opening a door with a lever door handle, and picking up a pen off the table. We show that the learnt force control policies allow successful, robust execution of the tasks.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Control of legged robots with optimal distribution of contact forces

Righetti, L., Buchli, J., Mistry, M., Schaal, S.

In 2011 11th IEEE-RAS International Conference on Humanoid Robots, pages: 318-324, IEEE, Bled, Slovenia, 2011 (inproceedings)

Abstract
The development of agile and safe humanoid robots require controllers that guarantee both high tracking performance and compliance with the environment. More specifically, the control of contact interaction is of crucial importance for robots that will actively interact with their environment. Model-based controllers such as inverse dynamics or operational space control are very appealing as they offer both high tracking performance and compliance. However, while widely used for fully actuated systems such as manipulators, they are not yet standard controllers for legged robots such as humanoids. Indeed such robots are fundamentally different from manipulators as they are underactuated due to their floating-base and subject to switching contact constraints. In this paper we present an inverse dynamics controller for legged robots that use torque redundancy to create an optimal distribution of contact constraints. The resulting controller is able to minimize, given a desired motion, any quadratic cost of the contact constraints at each instant of time. In particular we show how this can be used to minimize tangential forces during locomotion, therefore significantly improving the locomotion of legged robots on difficult terrains. In addition to the theoretical result, we present simulations of a humanoid and a quadruped robot, as well as experiments on a real quadruped robot that demonstrate the advantages of the controller.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Learning Motion Primitive Goals for Robust Manipulation

Stulp, F., Theodorou, E., Kalakrishnan, M., Pastor, P., Righetti, L., Schaal, S.

In IEEE/RSJ International Conference on Intelligent Robots and Systems, pages: 325-331, IEEE, San Francisco, USA, sep 2011 (inproceedings)

Abstract
Applying model-free reinforcement learning to manipulation remains challenging for several reasons. First, manipulation involves physical contact, which causes discontinuous cost functions. Second, in manipulation, the end-point of the movement must be chosen carefully, as it represents a grasp which must be adapted to the pose and shape of the object. Finally, there is uncertainty in the object pose, and even the most carefully planned movement may fail if the object is not at the expected position. To address these challenges we 1) present a simplified, computationally more efficient version of our model-free reinforcement learning algorithm PI2; 2) extend PI2 so that it simultaneously learns shape parameters and goal parameters of motion primitives; 3) use shape and goal learning to acquire motion primitives that are robust to object pose uncertainty. We evaluate these contributions on a manipulation platform consisting of a 7-DOF arm with a 4-DOF hand.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Inverse Dynamics Control of Floating-Base Robots with External Constraints: a Unified View

Righetti, L., Buchli, J., Mistry, M., Schaal, S.

In 2011 IEEE International Conference on Robotics and Automation, pages: 1085-1090, IEEE, Shanghai, China, 2011 (inproceedings)

Abstract
Inverse dynamics controllers and operational space controllers have proved to be very efficient for compliant control of fully actuated robots such as fixed base manipulators. However legged robots such as humanoids are inherently different as they are underactuated and subject to switching external contact constraints. Recently several methods have been proposed to create inverse dynamics controllers and operational space controllers for these robots. In an attempt to compare these different approaches, we develop a general framework for inverse dynamics control and show that these methods lead to very similar controllers. We are then able to greatly simplify recent whole-body controllers based on operational space approaches using kinematic projections, bringing them closer to efficient practical implementations. We also generalize these controllers such that they can be optimal under an arbitrary quadratic cost in the commands.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Compliant Task-Space Control with Back-Drivable Servo Actuators

Stueckler, J., Behnke, S.

In RoboCup, 7416, pages: 78-89, Lecture Notes in Computer Science, Springer, 2011 (inproceedings)

ev

link (url) [BibTex]

link (url) [BibTex]


no image
Interest point detection in depth images through scale-space surface analysis

Stueckler, J., Behnke, S.

In Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA), pages: 3568-3574, May 2011 (inproceedings)

ev

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Operational Space Control of Constrained and Underactuated Systems

Mistry, M., Righetti, L.

In Proceedings of Robotics: Science and Systems, Los Angeles, CA, USA, June 2011 (inproceedings)

Abstract
The operational space formulation (Khatib, 1987), applied to rigid-body manipulators, describes how to decouple task-space and null-space dynamics, and write control equations that correspond only to forces at the end-effector or, alternatively, only to motion within the null-space. We would like to apply this useful theory to modern humanoids and other legged systems, for manipulation or similar tasks, however these systems present additional challenges due to their underactuated floating bases and contact states that can dynamically change. In recent work, Sentis et al. derived controllers for such systems by implementing a task Jacobian projected into a space consistent with the supporting constraints and underactuation (the so called "support consistent reduced Jacobian"). Here, we take a new approach to derive operational space controllers for constrained underactuated systems, by first considering the operational space dynamics within "projected inverse-dynamics" (Aghili, 2005), and subsequently resolving underactuation through the addition of dynamically consistent control torques. Doing so results in a simplified control solution compared with previous results, and importantly yields several new insights into the underlying problem of operational space control in constrained environments: 1) Underactuated systems, such as humanoid robots, cannot in general completely decouple task and null-space dynamics. However, 2) there may exist an infinite number of control solutions to realize desired task-space dynamics, and 3) these solutions involve the addition of dynamically consistent null-space motion or constraint forces (or combinations of both). In light of these findings, we present several possible control solutions, with varying optimization criteria, and highlight some of their practical consequences.

mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Learning to Interpret Pointing Gestures with a Time-of-flight Camera

Droeschel, D., Stueckler, J., Behnke, S.

In Proceedings of the 6th International Conference on Human-robot Interaction, pages: 481-488, ACM, 2011 (inproceedings)

ev

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Online movement adaptation based on previous sensor experiences

Pastor, P., Righetti, L., Kalakrishnan, M., Schaal, S.

In 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages: 365-371, IEEE, San Francisco, USA, sep 2011 (inproceedings)

Abstract
Personal robots can only become widespread if they are capable of safely operating among humans. In uncertain and highly dynamic environments such as human households, robots need to be able to instantly adapt their behavior to unforseen events. In this paper, we propose a general framework to achieve very contact-reactive motions for robotic grasping and manipulation. Associating stereotypical movements to particular tasks enables our system to use previous sensor experiences as a predictive model for subsequent task executions. We use dynamical systems, named Dynamic Movement Primitives (DMPs), to learn goal-directed behaviors from demonstration. We exploit their dynamic properties by coupling them with the measured and predicted sensor traces. This feedback loop allows for online adaptation of the movement plan. Our system can create a rich set of possible motions that account for external perturbations and perception uncertainty to generate truly robust behaviors. As an example, we present an application to grasping with the WAM robot arm.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Efficient Multi-resolution Plane Segmentation of 3D Point Clouds

Oehler, B., Stueckler, J., Welle, J., Schulz, D., Behnke, S.

In Proc. of the Int. Conf. on Intelligent Robotics and Applications (ICIRA), 7102, pages: 145-156, Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2011 (inproceedings)

ev

link (url) DOI [BibTex]

link (url) DOI [BibTex]

2010


no image
Combining depth and color cues for scale- and viewpoint-invariant object segmentation and recognition using Random Forests

Stueckler, J., Behnke, S.

In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), pages: 4566-4571, October 2010 (inproceedings)

ev

link (url) DOI [BibTex]

2010


link (url) DOI [BibTex]


no image
Intuitive Multimodal Interaction for Domestic Service Robots

Nieuwenhuisen, M., Stueckler, J., Behnke, S.

In Proc. of the ISR/ROBOTIK, VDE Verlag, 2010 (inproceedings)

ev

link (url) [BibTex]

link (url) [BibTex]


no image
Improving People Awareness of Service Robots by Semantic Scene Knowledge

Stueckler, J., Behnke, S.

In RobuCup, 6556, pages: 157-168, Lecture Notes in Computer Science, Springer, 2010 (inproceedings)

ev

link (url) [BibTex]

link (url) [BibTex]


no image
Towards Semantic Scene Analysis with Time-of-flight Cameras

Holz, D., Schnabel, R., Droeschel, D., Stueckler, J., Behnke, S.

In RobuCup, 6556, pages: 121-132, Lecture Notes in Computer Science, Springer, 2010 (inproceedings)

ev

link (url) [BibTex]

link (url) [BibTex]


no image
Utilizing the Structure of Field Lines for Efficient Soccer Robot Localization

Schulz, H., Liu, W., Stueckler, J., Behnke, S.

In RobuCup, 6556, pages: 397-408, Lecture Notes in Computer Science, Springer, 2010 (inproceedings)

ev

link (url) [BibTex]

link (url) [BibTex]


no image
Improving indoor navigation of autonomous robots by an explicit representation of doors

Nieuwenhuisen, M., Stueckler, J., Behnke, S.

In Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA), pages: 4895-4901, May 2010 (inproceedings)

ev

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Constrained Accelerations for Controlled Geometric Reduction: Sagittal-Plane Decoupling for Bipedal Locomotion

Gregg, R., Righetti, L., Buchli, J., Schaal, S.

In 2010 10th IEEE-RAS International Conference on Humanoid Robots, pages: 1-7, IEEE, Nashville, USA, 2010 (inproceedings)

Abstract
Energy-shaping control methods have produced strong theoretical results for asymptotically stable 3D bipedal dynamic walking in the literature. In particular, geometric controlled reduction exploits robot symmetries to control momentum conservation laws that decouple the sagittal-plane dynamics, which are easier to stabilize. However, the associated control laws require high-dimensional matrix inverses multiplied with complicated energy-shaping terms, often making these control theories difficult to apply to highly-redundant humanoid robots. This paper presents a first step towards the application of energy-shaping methods on real robots by casting controlled reduction into a framework of constrained accelerations for inverse dynamics control. By representing momentum conservation laws as constraints in acceleration space, we construct a general expression for desired joint accelerations that render the constraint surface invariant. By appropriately choosing an orthogonal projection, we show that the unconstrained (reduced) dynamics are decoupled from the constrained dynamics. Any acceleration-based controller can then be used to stabilize this planar subsystem, including passivity-based methods. The resulting control law is surprisingly simple and represents a practical way to employ control theoretic stability results in robotic platforms. Simulated walking of a 3D compass-gait biped show correspondence between the new and original controllers, and simulated motions of a 16-DOF humanoid demonstrate the applicability of this method.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Improving imitated grasping motions through interactive expected deviation learning

Gräve, K., Stueckler, J., Behnke, S.

In Proc. of the 10th IEEE-RAS Int. Conf. on Humanoid Robots (Humanoids), pages: 397-404, December 2010 (inproceedings)

ev

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Learning Motion Skills from Expert Demonstrations and Own Experience using Gaussian Process Regression

Gräve, K., Stueckler, J., Behnke, S.

In Proc. of the ISR/ROBOTIK, pages: 1-8, VDE Verlag, 2010 (inproceedings)

ev

link (url) [BibTex]

link (url) [BibTex]


no image
Using Time-of-Flight cameras with active gaze control for 3D collision avoidance

Droeschel, D., Holz, D., Stueckler, J., Behnke, S.

In Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA), pages: 4035-4040, May 2010 (inproceedings)

ev

link (url) [BibTex]

link (url) [BibTex]


no image
Inverse dynamics with optimal distribution of ground reaction forces for legged robot

Righetti, L., Buchli, J., Mistry, M., Schaal, S.

In Proceedings of the 13th International Conference on Climbing and Walking Robots (CLAWAR), pages: 580-587, Nagoya, Japan, sep 2010 (inproceedings)

Abstract
Contact interaction with the environment is crucial in the design of locomotion controllers for legged robots, to prevent slipping for example. Therefore, it is of great importance to be able to control the effects of the robots movements on the contact reaction forces. In this contribution, we extend a recent inverse dynamics algorithm for floating base robots to optimize the distribution of contact forces while achieving precise trajectory tracking. The resulting controller is algorithmically simple as compared to other approaches. Numerical simulations show that this result significantly increases the range of possible movements of a humanoid robot as compared to the previous inverse dynamics algorithm. We also present a simplification of the result where no inversion of the inertia matrix is needed which is particularly relevant for practical use on a real robot. Such an algorithm becomes interesting for agile locomotion of robots on difficult terrains where the contacts with the environment are critical, such as walking over rough or slippery terrain.

am mg

DOI [BibTex]

DOI [BibTex]

2009


no image
Integrating indoor mobility, object manipulation, and intuitive interaction for domestic service tasks

Stueckler, J., Behnke, S.

In Proc. of the IEEE-RAS Int. Conf. on Humanoid Robots (Humanoids), pages: 506-513, December 2009 (inproceedings)

ev

link (url) DOI [BibTex]

2009


link (url) DOI [BibTex]


no image
Modelling the interplay of central pattern generation and sensory feedback in the neuromuscular control of running

Daley, M., Righetti, L., Ijspeert, A.

In Comparative Biochemistry and Physiology - Part A: Molecular & Integrative Physiology. Annual Main Meeting for the Society for Experimental Biology, 153, Glasgow, Scotland, 2009 (inproceedings)

mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Dynamaid, an Anthropomorphic Robot for Research on Domestic Service Applications

Stueckler, J., Schreiber, M., Behnke, S.

In Proc. of the European Conference on Mobile Robots (ECMR), pages: 87-92, 2009 (inproceedings)

ev

link (url) [BibTex]

link (url) [BibTex]

2008


no image
Pattern generators with sensory feedback for the control of quadruped locomotion

Righetti, L., Ijspeert, A.

In 2008 IEEE International Conference on Robotics and Automation, pages: 819-824, IEEE, Pasadena, USA, 2008 (inproceedings)

Abstract
Central pattern generators (CPGs) are becoming a popular model for the control of locomotion of legged robots. Biological CPGs are neural networks responsible for the generation of rhythmic movements, especially locomotion. In robotics, a systematic way of designing such CPGs as artificial neural networks or systems of coupled oscillators with sensory feedback inclusion is still missing. In this contribution, we present a way of designing CPGs with coupled oscillators in which we can independently control the ascending and descending phases of the oscillations (i.e. the swing and stance phases of the limbs). Using insights from dynamical system theory, we construct generic networks of oscillators able to generate several gaits under simple parameter changes. Then we introduce a systematic way of adding sensory feedback from touch sensors in the CPG such that the controller is strongly coupled with the mechanical system it controls. Finally we control three different simulated robots (iCub, Aibo and Ghostdog) using the same controller to show the effectiveness of the approach. Our simulations prove the importance of independent control of swing and stance duration. The strong mutual coupling between the CPG and the robot allows for more robust locomotion, even under non precise parameters and non-flat environment.

mg

link (url) DOI [BibTex]

2008


link (url) DOI [BibTex]


no image
Experimental Study of Limit Cycle and Chaotic Controllers for the Locomotion of Centipede Robots

Matthey, L., Righetti, L., Ijspeert, A.

In 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages: 1860-1865, IEEE, Nice, France, sep 2008 (inproceedings)

Abstract
In this contribution we present a CPG (central pattern generator) controller based on coupled Rossler systems. It is able to generate both limit cycle and chaotic behaviors through bifurcation. We develop an experimental test bench to measure quantitatively the performance of different controllers on unknown terrains of increasing difficulty. First, we show that for flat terrains, open loop limit cycle systems are the most efficient (in terms of speed of locomotion) but that they are quite sensitive to environmental changes. Second, we show that sensory feedback is a crucial addition for unknown terrains. Third, we show that the chaotic controller with sensory feedback outperforms the other controllers in very difficult terrains and actually promotes the emergence of short synchronized movement patterns. All that is done using an unified framework for the generation of limit cycle and chaotic behaviors, where a simple parameter change can switch from one behavior to the other through bifurcation. Such flexibility would allow the automatic adaptation of the robot locomotion strategy to the terrain uncertainty.

mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
In-lane Localization in Road Networks using Curbs Detected in Omnidirectional Height Images

Stueckler, J., Schulz, H., Behnke, S.

In Proceedings of Robotik 2008, 2008 (inproceedings)

ev

link (url) [BibTex]

link (url) [BibTex]


no image
A Dynamical System for Online Learning of Periodic Movements of Unknown Waveform and Frequency

Gams, A., Righetti, L., Ijspeert, A., Lenarčič, J.

In 2008 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, pages: 85-90, IEEE, Scottsdale, USA, October 2008 (inproceedings)

Abstract
The paper presents a two-layered system for learning and encoding a periodic signal onto a limit cycle without any knowledge on the waveform and the frequency of the signal, and without any signal processing. The first dynamical system is responsible for extracting the main frequency of the input signal. It is based on adaptive frequency phase oscillators in a feedback structure, enabling us to extract separate frequency components without any signal processing, as all of the processing is embedded in the dynamics of the system itself. The second dynamical system is responsible for learning of the waveform. It has a built-in learning algorithm based on locally weighted regression, which adjusts the weights according to the amplitude of the input signal. By combining the output of the first system with the input of the second system we can rapidly teach new trajectories to robots. The systems works online for any periodic signal and can be applied in parallel to multiple dimensions. Furthermore, it can adapt to changes in frequency and shape, e.g. to non-stationary signals, and is computationally inexpensive. Results using simulated and hand-generated input signals, along with applying the algorithm to a HOAP-2 humanoid robot are presented.

mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Passive compliant quadruped robot using central pattern generators for locomotion control

Rutishauser, S., Sproewitz, A., Righetti, L., Ijspeert, A.

In 2008 IEEE International Conference on Biomedical Robotics and Biomechatronics, pages: 710-715, IEEE, Scottsdale, USA, October 2008 (inproceedings)

Abstract
We present a new quadruped robot, ldquoCheetahrdquo, featuring three-segment pantographic legs with passive compliant knee joints. Each leg has two degrees of freedom - knee and hip joint can be actuated using proximal mounted RC servo motors, force transmission to the knee is achieved by means of a bowden cable mechanism. Simple electronics to command the actuators from a desktop computer have been designed in order to test the robot. A Central Pattern Generator (CPG) network has been implemented to generate different gaits. A parameter space search was performed and tested on the robot to optimize forward velocity.

mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]