Header logo is


2020


A gamified app that helps people overcome self-limiting beliefs by promoting metacognition
A gamified app that helps people overcome self-limiting beliefs by promoting metacognition

Amo, V., Lieder, F.

pages: 6, SIG 8 Meets SIG 16, September 2020 (conference)

Abstract
Previous research has shown that approaching learning with a growth mindset is key for maintaining motivation and overcoming setbacks. Mindsets are systems of beliefs that people hold to be true. They influence a person's attitudes, thoughts, and emotions when they learn something new or encounter challenges. In clinical psychology, metareasoning (reflecting on one's mental processes) and meta-awareness (recognizing thoughts as mental events instead of equating them to reality) have proven effective for overcoming maladaptive thinking styles. Hence, they are potentially an effective method for overcoming self-limiting beliefs in other domains as well. However, the potential of integrating assisted metacognition into mindset interventions has not been explored yet. Here, we propose that guiding and training people on how to leverage metareasoning and meta-awareness for overcoming self-limiting beliefs can significantly enhance the effectiveness of mindset interventions. To test this hypothesis, we develop a gamified mobile application that guides and trains people to use metacognitive strategies based on Cognitive Restructuring (CR) and Acceptance Commitment Therapy (ACT) techniques. The application helps users to identify and overcome self-limiting beliefs by working with aversive emotions when they are triggered by fixed mindsets in real-life situations. Our app aims to help people sustain their motivation to learn when they face inner obstacles (e.g. anxiety, frustration, and demotivation). We expect the application to be an effective tool for helping people better understand and develop the metacognitive skills of emotion regulation and self-regulation that are needed to overcome self-limiting beliefs and develop growth mindsets.

re

A gamified app that helps people overcome self-limiting beliefs by promoting metacognition [BibTex]


no image
Where Does It End? - Reasoning About Hidden Surfaces by Object Intersection Constraints

Strecke, M., Stückler, J.

In Proceedings IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR), IEEE/CVF International Conference on Computer Vision and Pattern Recognition (CVPR) 2020, June 2020 (inproceedings)

ev

preprint project page [BibTex]

preprint project page [BibTex]


Interface-mediated spontaneous symmetry breaking and mutual communication between drops containing chemically active particles
Interface-mediated spontaneous symmetry breaking and mutual communication between drops containing chemically active particles

Singh, D., Domínguez, A., Choudhury, U., Kottapalli, S., Popescu, M., Dietrich, S., Fischer, P.

Nature Communications, 11(2210), May 2020 (article)

Abstract
Symmetry breaking and the emergence of self-organized patterns is the hallmark of com- plexity. Here, we demonstrate that a sessile drop, containing titania powder particles with negligible self-propulsion, exhibits a transition to collective motion leading to self-organized flow patterns. This phenomenology emerges through a novel mechanism involving the interplay between the chemical activity of the photocatalytic particles, which induces Mar- angoni stresses at the liquid–liquid interface, and the geometrical confinement provided by the drop. The response of the interface to the chemical activity of the particles is the source of a significantly amplified hydrodynamic flow within the drop, which moves the particles. Furthermore, in ensembles of such active drops long-ranged ordering of the flow patterns within the drops is observed. We show that the ordering is dictated by a chemical com- munication between drops, i.e., an alignment of the flow patterns is induced by the gradients of the chemicals emanating from the active particles, rather than by hydrodynamic interactions.

pf icm

link (url) DOI [BibTex]


Spectrally selective and highly-sensitive UV photodetection with UV-A, C band specific polarity switching in silver plasmonic nanoparticle enhanced gallium oxide thin-film
Spectrally selective and highly-sensitive UV photodetection with UV-A, C band specific polarity switching in silver plasmonic nanoparticle enhanced gallium oxide thin-film

Arora, K., Singh, D., Fischer, P., Kumar, M.

Adv. Opt. Mat., March 2020 (article)

Abstract
Traditional photodetectors generally show a unipolar photocurrent response when illuminated with light of wavelength equal or shorter than the optical bandgap. Here, we report that a thin film of gallium oxide (GO) decorated with plasmonic nanoparticles, surprisingly, exhibits a change in the polarity of the photocurrent for different UV bands. Silver (Ag) nanoparticles are vacuum-deposited onto β-Ga2O3 and the AgNP@GO thin films show a record responsivity of 250 A/W, which significantly outperforms bare GO planar photodetectors. The photoresponsivity reverses sign from +157 µA/W in the UV-C band under unbiased operation to -353 µA/W in the UV-A band. The current reversal is rationalized by considering the charge dynamics stemming from hot electrons generated when the incident light excites a local surface plasmon resonance (LSPR) in the Ag nanoparticles. The Ag nanoparticles improve the external quantum efficiency and detectivity by nearly one order of magnitude with high values of 1.2×105 and 3.4×1014 Jones, respectively. This plasmon-enhanced solar blind GO detector allows UV regions to be spectrally distinguished, which is useful for the development of sensitive dynamic imaging photodetectors.

pf

[BibTex]


Acoustofluidic Tweezers for the 3D Manipulation of Microparticles
Acoustofluidic Tweezers for the 3D Manipulation of Microparticles

Guo, X., Ma, Z., Goyal, R., Jeong, M., Pang, W., Fischer, P., Dian, X., Qiu, T.

In 2020 IEEE International Conference on Robotics and Automation (ICRA),, Febuary 2020 (conference)

Abstract
Non-contact manipulation is of great importance in the actuation of micro-robotics. It is challenging to contactless manipulate micro-scale objects over large spatial distance in fluid. Here, we describe a novel approach for the dynamic position control of microparticles in three-dimensional (3D) space, based on high-speed acoustic streaming generated by a micro-fabricated gigahertz transducer. Due to the vertical lifting force and the horizontal centripetal force generated by the streaming, microparticles are able to be stably trapped at a position far away from the transducer surface, and to be manipulated over centimeter distance in all three directions. Only the hydrodynamic force is utilized in the system for particle manipulation, making it a versatile tool regardless the material properties of the trapped particle. The system shows high reliability and manipulation velocity, revealing its potentials for the applications in robotics and automation at small scales.

pf

[BibTex]

[BibTex]


Investigating photoresponsivity of graphene-silver hybrid nanomaterials in the ultraviolet
Investigating photoresponsivity of graphene-silver hybrid nanomaterials in the ultraviolet

Deshpande, P., Suri, P., Jeong, H., Fischer, P., Ghosh, A., Ghosh, G.

J. Chem. Phys., 152, pages: 044709, January 2020 (article)

Abstract
There have been several reports of plasmonically enhanced graphene photodetectors in the visible and the near infrared regime but rarely in the ultraviolet. In a previous work, we have reported that a graphene-silver hybrid structure shows a high photoresponsivity of 13 A/W at 270 nm. Here, we consider the likely mechanisms that underlie this strong photoresponse. We investigate the role of the plasmonic layer and examine the response using silver and gold nanoparticles of similar dimensions and spatial arrangement. The effect on local doping, strain, and absorption properties of the hybrid is also probed by photocurrent measurements and Raman and UV-visible spectroscopy. We find that the local doping from the silver nanoparticles is stronger than that from gold and correlates with a measured photosensitivity that is larger in devices with a higher contact area between the plasmonic nanomaterials and the graphene layer.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]


A High-Fidelity Phantom for the Simulation and Quantitative Evaluation of Transurethral Resection of the Prostate
A High-Fidelity Phantom for the Simulation and Quantitative Evaluation of Transurethral Resection of the Prostate

Choi, E., Adams, F., Gengenbacher, A., Schlager, D., Palagi, S., Müller, P., Wetterauer, U., Miernik, A., Fischer, P., Qiu, T.

Annals of Biomed. Eng., 48, pages: 437-446, January 2020 (article)

Abstract
Transurethral resection of the prostate (TURP) is a minimally invasive endoscopic procedure that requires experience and skill of the surgeon. To permit surgical training under realistic conditions we report a novel phantom of the human prostate that can be resected with TURP. The phantom mirrors the anatomy and haptic properties of the gland and permits quantitative evaluation of important surgical performance indicators. Mixtures of soft materials are engineered to mimic the physical properties of the human tissue, including the mechanical strength, the electrical and thermal conductivity, and the appearance under an endoscope. Electrocautery resection of the phantom closely resembles the procedure on human tissue. Ultrasound contrast agent was applied to the central zone, which was not detectable by the surgeon during the surgery but showed high contrast when imaged after the surgery, to serve as a label for the quantitative evaluation of the surgery. Quantitative criteria for performance assessment are established and evaluated by automated image analysis. We present the workflow of a surgical simulation on a prostate phantom followed by quantitative evaluation of the surgical performance. Surgery on the phantom is useful for medical training, and enables the development and testing of endoscopic and minimally invasive surgical instruments.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Interactive Materials – Drivers of Future Robotic Systems
Interactive Materials – Drivers of Future Robotic Systems

Fischer, P.

Adv. Mat., January 2020 (article)

Abstract
A robot senses its environment, processes the sensory information, acts in response to these inputs, and possibly communicates with the outside world. Robots generally achieve these tasks with electronics-based hardware or by receiving inputs from some external hardware. In contrast, simple microorganisms can autonomously perceive, act, and communicate via purely physicochemical processes in soft material systems. A key property of biological systems is that they are built from energy-consuming ‘active’ units. Exciting developments in material science show that even very simple artificial active building blocks can show surprisingly rich emergent behaviors. Active non-equilibrium systems are therefore predicted to play an essential role to realize interactive materials. A major challenge is to find robust ways to couple and integrate the energy-consuming building blocks to the mechanical structure of the material. However, success in this endeavor will lead to a new generation of sophisticated micro- and soft-robotic systems that can operate autonomously.

pf

link (url) DOI [BibTex]


no image
Axisymmetric spheroidal squirmers and self-diffusiophoretic particles

Pöhnl, R., Popescu, M. N., Uspal, W. E.

Journal of Physics: Condensed Matter, 32(16), IOP Publishing, Bristol, 2020 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Tracer diffusion on a crowded random Manhattan lattice

Mej\’\ia-Monasterio, C., Nechaev, S., Oshanin, G., Vasilyev, O.

New Journal of Physics, 22(3), IOP Publishing, Bristol, 2020 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
ACTrain: Ein KI-basiertes Aufmerksamkeitstraining für die Wissensarbeit [ACTrain: An AI-based attention training for knowledge work]

Wirzberger, M., Oreshnikov, I., Passy, J., Lado, A., Shenhav, A., Lieder, F.

66th Spring Conference of the German Ergonomics Society, 2020 (conference)

Abstract
Unser digitales Zeitalter lebt von Informationen und stellt unsere begrenzte Verarbeitungskapazität damit täglich auf die Probe. Gerade in der Wissensarbeit haben ständige Ablenkungen erhebliche Leistungseinbußen zur Folge. Unsere intelligente Anwendung ACTrain setzt genau an dieser Stelle an und verwandelt Computertätigkeiten in eine Trainingshalle für den Geist. Feedback auf Basis maschineller Lernverfahren zeigt anschaulich den Wert auf, sich nicht von einer selbst gewählten Aufgabe ablenken zu lassen. Diese metakognitive Einsicht soll zum Durchhalten motivieren und das zugrunde liegende Fertigkeitsniveau der Aufmerksamkeitskontrolle stärken. In laufenden Feldexperimenten untersuchen wir die Frage, ob das Training mit diesem optimalen Feedback die Aufmerksamkeits- und Selbstkontrollfertigkeiten im Vergleich zu einer Kontrollgruppe ohne Feedback verbessern kann.

re sf

link (url) Project Page [BibTex]


no image
Wetting transitions on soft substrates

Napiorkowski, M., Schimmele, L., Dietrich, S.

{EPL}, 129(1), EDP Science, Les-Ulis, 2020 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Blessing and Curse: How a Supercapacitor Large Capacitance Causes its Slow Charging

Lian, C., Janssen, M., Liu, H., van Roij, R.

Physical Review Letters, 124(7), American Physical Society, Woodbury, N.Y., 2020 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Interplay of quenching temperature and drift in Brownian dynamics

Khalilian, H., Nejad, M. R., Moghaddam, A. G., Rohwer, C. M.

EPL, 128(6), EDP Science, Les-Ulis, 2020 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Fractal-seaweeds type functionalization of graphene

Amsharov, K., Sharapa, D. I., Vasilyev, O. A., Martin, O., Hauke, F., Görling, A., Soni, H., Hirsch, A.

Carbon, 158, pages: 435-448, Elsevier, Amsterdam, 2020 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Planning from Images with Deep Latent Gaussian Process Dynamics

Bosch, N., Achterhold, J., Leal-Taixe, L., Stückler, J.

2nd Annual Conference on Learning for Dynamics and Control (L4DC) , 2020, to appear, arXiv:2005.03770 (conference) Accepted

ev

preprint project page poster [BibTex]

preprint project page poster [BibTex]


no image
Effective pair interaction of patchy particles in critical fluids

Farahmand Bafi, N., Nowakowski, P., Dietrich, S.

The Journal of Chemical Physics, 152(11), American Institute of Physics, Woodbury, N.Y., 2020 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Visual-Inertial Mapping with Non-Linear Factor Recovery

Usenko, V., Demmel, N., Schubert, D., Stückler, J., Cremers, D.

IEEE Robotics and Automation Letters (RA-L), 5, 2020, accepted for presentation at IEEE International Conference on Robotics and Automation (ICRA) 2020, to appear, arXiv:1904.06504 (article)

Abstract
Cameras and inertial measurement units are complementary sensors for ego-motion estimation and environment mapping. Their combination makes visual-inertial odometry (VIO) systems more accurate and robust. For globally consistent mapping, however, combining visual and inertial information is not straightforward. To estimate the motion and geometry with a set of images large baselines are required. Because of that, most systems operate on keyframes that have large time intervals between each other. Inertial data on the other hand quickly degrades with the duration of the intervals and after several seconds of integration, it typically contains only little useful information. In this paper, we propose to extract relevant information for visual-inertial mapping from visual-inertial odometry using non-linear factor recovery. We reconstruct a set of non-linear factors that make an optimal approximation of the information on the trajectory accumulated by VIO. To obtain a globally consistent map we combine these factors with loop-closing constraints using bundle adjustment. The VIO factors make the roll and pitch angles of the global map observable, and improve the robustness and the accuracy of the mapping. In experiments on a public benchmark, we demonstrate superior performance of our method over the state-of-the-art approaches.

ev

[BibTex]

[BibTex]


no image
Cassie-Wenzel transition of a binary liquid mixture on a nanosculptured surface

Singh, S. L., Schimmele, L., Dietrich, S.

Physical Review E, 101(5), American Physical Society, Melville, NY, 2020 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
DirectShape: Photometric Alignment of Shape Priors for Visual Vehicle Pose and Shape Estimation

Wang, R., Yang, N., Stückler, J., Cremers, D.

In Accepted for IEEE international Conference on Robotics and Automation (ICRA), 2020, arXiv:1904.10097 (inproceedings) Accepted

ev

[BibTex]

[BibTex]


no image
Energy storage in steady states under cyclic local energy input

Zhang, Y., Holyst, R., Maciolek, A.

Physical Review E, 101(1), American Physical Society, Melville, NY, 2020 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Numerical simulations of self-diffusiophoretic colloids at fluid interfaces

Peter, T., Malgaretti, P., Rivas, N., Scagliarini, A., Harting, J., Dietrich, S.

Soft Matter, 16(14):3536-3547, Royal Society of Chemistry, Cambridge, UK, 2020 (article)

icm

DOI [BibTex]

DOI [BibTex]

2015


Enzymatically active biomimetic micropropellers for the penetration of mucin gels
Enzymatically active biomimetic micropropellers for the penetration of mucin gels

Walker (Schamel), D., Käsdorf, B. T., Jeong, H. H., Lieleg, O., Fischer, P.

Science Advances, 1(11):e1500501, December 2015 (article)

Abstract
In the body, mucus provides an important defense mechanism by limiting the penetration of pathogens. It is therefore also a major obstacle for the efficient delivery of particle-based drug carriers. The acidic stomach lining in particular is difficult to overcome because mucin glycoproteins form viscoelastic gels under acidic conditions. The bacterium Helicobacter pylori has developed a strategy to overcome the mucus barrier by producing the enzyme urease, which locally raises the pH and consequently liquefies the mucus. This allows the bacteria to swim through mucus and to reach the epithelial surface. We present an artificial system of reactive magnetic micropropellers that mimic this strategy to move through gastric mucin gels by making use of surface-immobilized urease. The results demonstrate the validity of this biomimetic approach to penetrate biological gels, and show that externally propelled microstructures can actively and reversibly manipulate the physical state of their surroundings, suggesting that such particles could potentially penetrate native mucus.

pf

link (url) DOI [BibTex]

2015


link (url) DOI [BibTex]


The EChemPen: A Guiding Hand To Learn Electrochemical Surface Modifications
The EChemPen: A Guiding Hand To Learn Electrochemical Surface Modifications

Valetaud, M., Loget, G., Roche, J., Hueken, N., Fattah, Z., Badets, V., Fontaine, O., Zigah, D.

J. of Chem. Ed., 92(10):1700-1704, September 2015 (article)

Abstract
The Electrochemical Pen (EChemPen) was developed as an attractive tool for learning electrochemistry. The fabrication, principle, and operation of the EChemPen are simple and can be easily performed by students in practical classes. It is based on a regular fountain pen principle, where the electrolytic solution is dispensed at a tip to locally modify a conductive surface by triggering a localized electrochemical reaction. Three simple model reactions were chosen to demonstrate the versatility of the EChemPen for teaching various electrochemical processes. We describe first the reversible writing/erasing of metal letters, then the electrodeposition of a black conducting polymer "ink", and finally the colorful writings that can be generated by titanium anodization and that can be controlled by the applied potential. These entertaining and didactic experiments are adapted for teaching undergraduate students that start to study electrochemistry by means of surface modification reactions.

pf

DOI [BibTex]

DOI [BibTex]


3D-printed Soft Microrobot for Swimming in Biological Fluids
3D-printed Soft Microrobot for Swimming in Biological Fluids

Qiu, T., Palagi, S., Fischer, P.

In Conf. Proc. IEEE Eng. Med. Biol. Soc., pages: 4922-4925, August 2015 (inproceedings)

Abstract
Microscopic artificial swimmers hold the potential to enable novel non-invasive medical procedures. In order to ease their translation towards real biomedical applications, simpler designs as well as cheaper yet more reliable materials and fabrication processes should be adopted, provided that the functionality of the microrobots can be kept. A simple single-hinge design could already enable microswimming in non-Newtonian fluids, which most bodily fluids are. Here, we address the fabrication of such single-hinge microrobots with a 3D-printed soft material. Firstly, a finite element model is developed to investigate the deformability of the 3D-printed microstructure under typical values of the actuating magnetic fields. Then the microstructures are fabricated by direct 3D-printing of a soft material and their swimming performances are evaluated. The speeds achieved with the 3D-printed microrobots are comparable to those obtained in previous work with complex fabrication procedures, thus showing great promise for 3D-printed microrobots to be operated in biological fluids.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Optimal Length of Low Reynolds Number Nanopropellers
Optimal Length of Low Reynolds Number Nanopropellers

Walker (Schamel), D., Kuebler, M., Morozov, K. I., Fischer, P., Leshansky, A. M.

Nano Letters, 15(7):4412-4416, June 2015 (article)

Abstract
Locomotion in fluids at the nanoscale is dominated by viscous drag. One efficient propulsion scheme is to use a weak rotating magnetic field that drives a chiral object. Froth bacterial flagella to artificial drills, the corkscrew is a universally useful chiral shape for propulsion in viscous environments. Externally powered magnetic micro- and nanomotors have been recently developed that allow for precise fuel-free propulsion in complex media. Here, we combine analytical and numerical theory with experiments on nanostructured screw-propellers to show that the optimal length is surprisingly short only about one helical turn, which is shorter than most of the structures in use to date. The results have important implications for the design of artificial actuated nano- and micropropellers and can dramatically reduce fabrication times, while ensuring optimal performance.

pf

DOI [BibTex]

DOI [BibTex]


A theoretical study of potentially observable chirality-sensitive NMR effects in molecules
A theoretical study of potentially observable chirality-sensitive NMR effects in molecules

Garbacz, P., Cukras, J., Jaszunski, M.

Phys. Chem. Chem. Phys., 17(35):22642-22651, May 2015 (article)

Abstract
Two recently predicted nuclear magnetic resonance effects, the chirality-induced rotating electric polarization and the oscillating magnetization, are examined for several experimentally available chiral molecules. We discuss in detail the requirements for experimental detection of chirality-sensitive NMR effects of the studied molecules. These requirements are related to two parameters: the shielding polarizability and the antisymmetric part of the nuclear magnetic shielding tensor. The dominant second contribution has been computed for small molecules at the coupled cluster and density functional theory levels. It was found that DFT calculations using the KT2 functional and the aug-cc-pCVTZ basis set adequately reproduce the CCSD(T) values obtained with the same basis set. The largest values of parameters, thus most promising from the experimental point of view, were obtained for the fluorine nuclei in 1,3-difluorocyclopropene and 1,3-diphenyl-2-fluoro-3-trifluoromethylcyclopropene.

pf

DOI [BibTex]

DOI [BibTex]


Dynamic Inclusion Complexes of Metal Nanoparticles Inside Nanocups
Dynamic Inclusion Complexes of Metal Nanoparticles Inside Nanocups

Alarcon-Correa, M., Lee, T. C., Fischer, P.

Angew. Chem. Int. Ed., 54(23):6730-6734, May 2015, Featured cover article. (article)

Abstract
Host-guest inclusion complexes are abundant in molecular systems and of fundamental importance in living organisms. Realizing a colloidal analogue of a molecular dynamic inclusion complex is challenging because inorganic nanoparticles (NPs) with a well-defined cavity and portal are difficult to synthesize in high yield and with good structural fidelity. Herein, a generic strategy towards the fabrication of dynamic 1: 1 inclusion complexes of metal nanoparticles inside oxide nanocups with high yield (> 70%) and regiospecificity (> 90%) by means of a reactive double Janus nanoparticle intermediate is reported. Experimental evidence confirms that the inclusion complexes are formed by a kinetically controlled mechanism involving a delicate interplay between bipolar galvanic corrosion and alloying-dealloying oxidation. Release of the NP guest from the nanocups can be efficiently triggered by an external stimulus. Featured cover article.

pf

DOI [BibTex]

DOI [BibTex]


Surface roughness-induced speed increase for active Janus micromotors
Surface roughness-induced speed increase for active Janus micromotors

Choudhury, U., Soler, L., Gibbs, J. G., Sanchez, S., Fischer, P.

Chem. Comm., 51(41):8660-8663, April 2015 (article)

Abstract
We demonstrate a simple physical fabrication method to control surface roughness of Janus micromotors and fabricate self-propelled active Janus microparticles with rough catalytic platinum surfaces that show a four-fold increase in their propulsion speed compared to conventional Janus particles coated with a smooth Pt layer.

pf

DOI [BibTex]

DOI [BibTex]


Active colloidal microdrills
Active colloidal microdrills

Gibbs, J. G., Fischer, P.

Chem. Comm., 51(20):4192-4195, Febuary 2015 (article)

Abstract
We demonstrate a chemically driven, autonomous catalytic microdrill. An asymmetric distribution of catalyst causes the helical swimmer to twist while it undergoes directed propulsion. A driving torque and hydrodynamic coupling between translation and rotation at low Reynolds number leads to drill-like swimming behaviour.

pf

DOI [BibTex]

DOI [BibTex]


no image
Structures of simple liquids in contact with nanosculptured surfaces

Singh, S. L., Schimmele, L., Dietrich, S.

Physical Review E, 91(3), American Physical Society, Melville, NY, 2015 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Line contribution to the critical Casimir force between a homogeneous and a chemically stepped surface

Parisen Toldin, F., Tröndle, M., Dietrich, S.

Journal of Physics: Condensed Matter, 27(21), IOP Publishing, Bristol, UK, 2015 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Self-propulsion of a catalytically active particle near a planar wall: from reflection to sliding and hovering

Uspal, W. E., Popescu, M. N., Dietrich, S., Tasinkevych, M.

Soft Matter, 11(3):434-438, Royal Society of Chemistry, Cambridge, UK, 2015 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
A size dependent evaluation of the cytotoxicity and uptake of nanographene oxide

Mendes, R. G., Koch, B., Bachmatiuk, A., Ma, X., Sanchez, S., Damm, C., Schmidt, O. G., Gemming, T., Eckert, J., Rümmeli, M. H.

Journal of Materials Chemistry B, 3(12):2522-2529, Royal Society of Chemistry, 2015 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
A bio-catalytically driven Janus mesoporous silica cluster motor with magnetic guidance

Ma, X., Sanchez, S.

Chemical Communications, 51(25):5467-5470, Royal Society of Chemistry, 2015 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Sperm Dynamics in Tubular Confinement

Magdanz, V., Koch, B., Sanchez, S., Schmidt, O. G.

Small, 11(7):781-785, Wiley Online Library, 2015 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Chromatic patchy particles: Effects of specific interactions on liquid structure

Vasilyev, O., Klumov, B. A., Tkachenko, A. V.

Physical Review E, 92(1), American Physical Society, Melville, NY, 2015 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Monte Carlo study of anisotropic scaling generated by disorder

Vasilyev, O., Berche, B., Dudka, M., Holovatch, Y.

Physical Review E, 92(4), American Physical Society, Melville, NY, 2015 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Fluctuations and diffusion in sheared athermal suspensions of deformable particles

Gross, M., Krüger, T., Varnik, F.

EPL, 108(6), IoPP, Bristol, 2015 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Enzyme-Powered Hollow Mesoporous Janus Nanomotors

Ma, Xing, Jannasch, Anita, Albrecht, Urban-Raphael, Hahn, Kersten, Miguel-Lopéz, Albert, Schäfer, Erik, Sanchez, Samuel

Nano Letters, 15(10):7043-7050, American Chemical Society, Washington, DC, 2015 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Interaction between colloidal particles on an oil\textendashwater interface in dilute and dense phases

Parolini, L., Cicuta, A. D. P., Law, A. D., Maestro, A., Buzza, M. A.

Journal of Physics: Condensed Matter, 27(19), IOP Publishing, Bristol, UK, 2015 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Anomalous Magnetotransport in Disordered Structures: Classical Edge-State Percolation

Schirmacher, Walter, Fuchs, Benedikt, Höfling, Felix, Franosch, Thomas

Physical Review Letters, 115, American Physical Society, Woodbury, N.Y., 2015 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Precise Localization and Control of Catalytic Janus Micromotors using Weak Magnetic Fields

Khalil, I. S., Magdanz, V., Sanchez, S., Schmidt, O. G., Misra, S.

International Journal of Advanced Robotic Systems, 12, InTech, Rijeka, Croatia, 2015 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Nano-photocatalysts in microfluidics, energy conversion and environmental applications

Parmar, J., Jang, S., Soler, L., Kim, D., Sánchez, S.

Lab on a Chip, 15(11):2352-2356, Royal Society of Chemistry, 2015 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Static dielectric properties of dense ionic fluids

Zarubin, G., Bier, M.

The Journal of Chemical Physics, 142(18), American Institute of Physics, Woodbury, N.Y., 2015 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Chemically Powered Micro-and Nanomotors

Sánchez, S., Soler, L., Katuri, J.

Angewandte Chemie, International Edition, 54(5):1414-1444, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2015 (article)

icm

[BibTex]

[BibTex]


no image
Convergence of large-deviation estimators

Rohwer, C. M., Angeletti, F., Touchette, H.

Physical Review E, 92(5), American Physical Society, Melville, NY, 2015 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Geometrically Tuned Channel Permeability

Malgaretti, P., Pagonabarraga, I., Rubi, J. M.

Macromolecular Symposia, 357(1):178-188, WILEY-VCH Verlag GmbH, Weinheim, Fed. Rep. of Germany, 2015 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Critical Casimir forces between planar and crenellated surfaces

Troendle, M., Harnau, L., Dietrich, S.

Journal of Physics: Condensed Matter, 27(21), IOP Publishing, Bristol, UK, 2015 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Theory of rheology in confinement

Aerov, A. A., Krüger, M.

Physical Review E, 92(4), American Physical Society, Melville, NY, 2015 (article)

icm

DOI [BibTex]

DOI [BibTex]